ECE 5650 – Project 1
Developing an Online Quiz System Using Low-Level Socket Programming
[image:]

By:
David Baron-Vega – GF7068
Brian McCoy – HB5610
Enesia Hamza – GP8542
Hadi Yassine – GV8096
Source Codes
Server Code:
[image: A screenshot of a computer program

Description automatically generated][image: A screenshot of a computer program

Description automatically generated]

Client Code:
[image: A screen shot of a computer program

Description automatically generated][image: A screen shot of a computer program

Description automatically generated][image: A screen shot of a computer program

Description automatically generated]

Cross-functional Communication Code:
[image: A screen shot of a computer program

Description automatically generated][image: A screenshot of a computer program

Description automatically generated]
[image: A screen shot of a computer program

Description automatically generated][image: A screen shot of a computer program

Description automatically generated]

Procedure
The provided code implements an online client-server quiz system. The system allows students and instructors to interact with the server through sockets. The client code is responsible for connecting to the server, submitting user type (instructor or student), providing access credentials, and sending various commands, such as taking a quiz or viewing grades. The server, on the other hand, establishes a socket connection, authenticates users based on user’s IDs and passwords, and handles quiz-related functions, including shuffling questions, grading, and storing grades in a file.
Client-Side Code:
The client-side code establishes a socket connection to the server. It prompts the user to input whether they are an instructor or a student, sending this information to the server. The user then provides the access credentials which include an access ID and password. After authentication, the client can submit various commands to the server, such as taking a quiz or viewing grades. These commands are sent using the established socket connection.
Server-Side Code:
The server-side code sets up a socket to listen for incoming connections. It handles user authentication based on the predefined user IDs and passwords. After successful authentication, the server distinguishes between instructors and students. For students, it facilitates the quiz-taking process, including shuffling questions, receiving user answers, grading, and storing grades in a file. For instructors, it allows them to view grades stored in the file.
Cross-functional Code:
The cross-functional code provides the essential building blocks for the client and server functionalities. Various utility functions were defined to handle socket communication, client-server interaction, and authentication processes. This code includes the quiz development functions that define quiz-related tasks, including question shuffling, quiz taking, grading, and storing and retrieving grades in and from the file defined.

*** Below is a breakdown of the code, showing how the code runs, and explaining all the functions used and defined.

Server Side:
Imports:
· socket: Provides low-level networking interface.
· random: Used for generating random numbers.
· funs: A source file containing various functions used in the code.
Initialization:
· quizLength: Number of questions in the quiz.
· qQ and qA: The sets of quiz questions and answers defined in the “funs” source code.
· team & lead: Dictionaries containing user IDs and corresponding passwords for students and instructors.
· fileName: The name of the file where grades will be stored (gradeStored.txt).
· port: Obtains a port number using the “getPort” function in the “funs” source code.
· serverSocket: Establishes a server socket using the “establishServer” function in the “funs” source code.
Main Loop:
· The code enters an infinite loop (while True), waiting for client connections.
· Once a connection is established, it enters a nested loop (while access == False), prompting for user credentials until authentication is successful.
· Once authenticated, it checks the type of user (messageAccess) and enters corresponding loops for students ("s") or instructors ("i").
Student Section (messageAccess = "s"):
· If the user requests to take a quiz (takeQuiz), it shuffles the quiz questions, allows the user to answer them, grades the quiz, and stores the grade.
· The user can request their grade (getGrade), and it sends the grade back.
· The student user can exit the loop (exit).
Instructor Section (messageAccess = "i"):
· If the instructor requests to view grades (viewGrades), it sends the contents of the grade file (gradeStored.txt).
· The instructor user can also exit the loop (exit).

Client Side:
Imports:
· socket: Provides low-level networking interface.
· funs: A source file containing various functions used in the code.
Initialization:
· port: Obtains a port number using the ”getPort” function from the funs source file.
· clientSocket: Establishes a client socket using the “establishClient” function from the funs module.
· addy: This variable is set to the value of “clientSocket”. It is used as an address for communication.
Authentication Loop:
· The code enters an infinite loop (while True), prompting for the type of access (student or instructor) until a valid type is provided.
· The access type is obtained using the “submitTypeRequest” function from the funs source file.
· If the access type is not "s" (student) or "i" (instructor), the loop continues until a valid type is provided.
· If a valid type is provided, the code proceeds to submit credentials using the “submitCredentials” function.
· The access status is then obtained using the “mailbox” function and opened using the “openMail” function.
· If access is granted, the loop is exited.
Student Section (accessType == "s"):
· Once access is granted for a student, a command list is printed, and the code enters a loop for processing student commands.
· The student can take a quiz by answering true/false questions.
· The user answers questions interactively until three questions are answered or the user decides to exit.
· After completing the quiz, the user can request their grade.
· The student user can exit the loop.
Instructor Section (accessType == "i"):
· Once access is granted for an instructor, a command list is printed, and the code enters a loop for processing instructor commands.
· The instructor can view grades.
· The instructor user can exit the loop.

Cross-functional Communication:
Socket Functions:
· getPort: Returns a predefined port number.
· postMan: Sends a message (mail) through the specified socket (sock).
· mailBox: Receives a message from the specified socket and decodes it.
· openMail: Prints the received message.
Client Functions:
· establishClient: Creates a client socket and connects it to the specified server (localhost and the provided port).
· submitTypeRequest: Takes user input to determine if the client is an instructor or student and sends this information to the server.
· submitCredentials: Takes user input for access ID and password, sending this information to the server.
· submitChoice: Takes user input for various commands and sends them to the server.
· authentication: Checks if the provided user ID and password match the predefined team dictionary.
Server Functions:
· establishServer: Creates a server socket, binds it to a specific port, and listens for incoming connections.
Quiz Development Functions:
· quizQuestions: Returns a list of predefined quiz questions.
· quizAnswers: Returns a list of the predefined correct answers to the quiz questions.
· shuffler: Shuffles the order of quiz questions and answers.
· actuateQuiz: Sends quiz questions to the client, receives user answers, and returns the user's answers.
· grader: Grades the quiz based on user answers and returns the calculated grade.
· gradeWriter: Adds user ID and grade to a file.
· gradeReader: Reads and prints the contents of the grade file.

Testing
We ran the program on python 3.11 to check for any bugs in the code. The steps and results are shown below.
· Switch to the directory where the code files are located (serverProject folder).
· Connect the server side in one terminal and client side in another using the commands “python3 server.py” & “python3 client.py” respectively to their code files.
[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer program

Description automatically generated]
Once the server is connected and ready, we can launch the instructions on the client’s side. The program runs as follows:
1. The program prompts the user to type “i” for instructor or “s” for student.
2. It prompts the user to enter the access ID and password.
3. The program authenticates the inserted credentials.
4. If credentials are valid, the system prints a “granted” message.
5. The system prompts the user to insert a command (takeQuiz or exit) from the list.
6. It prints the first question in the quiz and prompts the user to input an answer (T or F).
7. After answering all 3 quiz questions, the system prompts the user to insert an action (getGrade or exit) from the command list.
8. If “getGrade” command was inserted, the system calculates the grade and prints it indicating that the quiz is finished.
9. The system saves the grades in the file (gradeStored.txt) for instructor to view.
Note that at any point during the quiz, the user can type “exit” and the program terminates.
[image: A computer screen with white text

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated][image: A screen shot of a computer

Description automatically generated]

Completion & Self-Critique
· The program meets all requirements:
· The program supports only one quiz.
· The quiz contents are stored on the server.
· The points assigned to each quiz are divided equally among the quiz questions.
· The quiz supports only true/false questions.
· The user can take the quiz multiple times during the same session.
· The quiz is not time limited.
· All commands are case-insensitive.
· The client and server programs check for the validity of inputs and take the proper actions.
· The quiz data structure contains more questions than presented to a student.
· The program runs in an infinite loop, awaiting user’s input and proceeds accordingly.

· The program runs correctly all the time without any issues.
· The program has been tested numerous times, and always runs smoothly implying the same procedure.
· The code is neat, organized, and well documented.
image4.png
55 # user interaction loop for students

56 while access == True and messageAccess ==

57 mail = funs.mailBox(addy)

58 if mail == "takeQuiz":

59 # randomize questions and answers by shuffle
60 shuf_Q, shuf_A = funs.shuffler(qQ, gA)

61

62 # perform the quiz and get user answers

63 quizUserAnswers = funs.actuateQuiz(quizLength, shuf_Q, connectionSocket)
64

65 # notify the user that the quiz has finished

66 quizStatus = "You have finished the quiz\n"

67 funs.postMan(quizStatus, addy)

68

69 # grade the quiz

70 grade_s = funs.grader(quizUserAnswers, shuf_A, quizLength)
71

72 # get user choice for viewing grade or exit

73 mail = funs.mailBox(addy)

74 if mail == "getGrade":

75 # send the grade to the client and write it to a file
76 funs.postMan(grade_s, addy)

77 funs.gradeWriter(userId, grade_s, fileName)
78 elif mail == "exit":

79 break

80 else:

81 continue

82

83 elif mail == "exit":

84 break

85

86 else:

87 continue

88

89 # user interaction loop for instructors

90 while access == True and messageAccess ==

91 mail = funs.mailBox(addy)

92 if mail == "viewGrades":

k] # send the file containing grades to the client
94 funs.postMan(fileName, addy)

95 elif mail == "exit":

96 break

97 else:

98 continue

99

100

image5.png
©ooNOU A WNR

WWWWWNNNNNNNNNNRRRRERRRPRRRRR
P WNRFROO®XMIIOODUDRWNR®O®NOUDWNRS

importing libraries needed
import socket
import funs # include module 'funs' containing required functions

get port from user input
port = funs.getPort()

establish the client socket connection
clientSocket = funs.establishClient(port)
addy = clientSocket # socket 'addy' is a server address

loop used for user authentication

while True:

get the type of access from user input
accessType = funs.submitTypeRequest(addy)

check if access type is valid

if accessType != "s" and accessType != "i'":
continue

if not continue the loop

else:

submit authentication credentials
funs.submitCredentials (addy)

check mailbox for access status
access = funs.mailBox(addy)

if access is granted open mail
funs.openMail(access)

if access is granted exit the loop
if access == "granted":
break

image6.png
85
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

loop for user interaction based on access type
while access == "granted" and accessType == "s":
print("\n\nCommand List (command): Take Quiz (takeQuiz) Exit (exit)\n")

get user choice for either quiz or exit
mail = funs.submitChoice(addy)

if mail == "takeQuiz":
count = @
print('\n\nbeginning...\n")
while True:
if count < 3:
ask the quiz questions and get user input

if count ==
incoming = funs.mailBox(addy)
print(incoming)

message = input("\nanswer (T or F): ")
funs.postMan(message, addy)
count = count + 1
elif count >= 1:
print("\n\nCommand List (command): Next Question (nextQuestion) Exit (exit)\n")

get the user's choice for next question or exit
mail = funs.submitChoice(addy)
if mail == "nextQuestion":
incoming = funs.mailBox(addy)
print(incoming)
message = input("\nanswer (T or F): ")
funs.postMan(message, addy)
count = count + 1

elif mail == "exit":
break
else:
continue
else:
break

print("\n\nCommand List (command): Get Grade (getGrade) Exit (exit)\n")
mail = funs.submitChoice(addy)
if mail == "getGrade":

get and display the quiz grade

quizStatus = funs.mailBox(addy)

print(quizStatus)

gradeIncoming = funs.mailBox(addy)

print("Your Grade is: " + gradeIncoming + "%")

elif mail == "exit":
break
else:
continue
elif mail == "exit":

close the client socket and exit the loop
clientSocket.close()
break

image7.png
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

loop for user interaction based on access type
while access == "granted" and accessType == "i":
print("\n\nCommand List (command): View Grades (viewGrades) Exit (exit)\n")
mail = funs.submitChoice(addy)
if mail == "viewGrades":
read and display the grades
mail = funs.mailBox(addy)
funs.gradeReader(mail)
elif mail == "exit":
close the client socket and exit the loop
clientSocket.close()
break
else:
continue

image8.png
©oO~NOU A WNR

UUulululu D DD DD DDDDDWWWWWWWWWWNNNNNNNNNNRRRRERRRPERRRR
UBPWNROO®OXIIOUDWNROOIIINDUDWNROOXIIOIDUDPWNR®O®NOUDMWNRSS

import socket # Import the socket library for network connections.
import random # Import the random library for generating random numbers.

Define a function to get a fixed port number.

def getPort():
port = 10354 # Define a specific port number for socket communication.
return port # Return the defined port number.

Functions for sending and receiving messages.

Function to send a message through a socket.

def postMan(mail, sock):
sock.send(mail.encode()) # Encode the 'mail' string to bytes and send it through the socket 'sock'.
pass # Placeholder, currently not performing any additional operations.

Function to receive a message from a socket.

def mailBox(sock):
mail = sock.recv(1024).decode() # Receive up to 1024 bytes from 'sock' and decode it to a string.
return mail # Return the decoded message as a string.

Function to print a received message.
def openMail(mail):
print(mail) # Print the received 'mail' message.
pass # Placeholder, currently not performing any additional operations.

Client-side functions.

Establishes a connection to the server.

def establishClient(port):
serverName = "localhost" # Set the server address to the local machine.
serverPort = port # Use the provided 'port' number for connecting.

Create a TCP/IP socket for the client.

clientSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
clientSocket.connect((serverName, serverPort)) # Connect the socket to the server.
return clientSocket # Return the connected client socket.

Sends user role (instructor or student) to the server.

def submitTypeRequest(clientSocket):
message = input("\nAre you an Instructor(i) or Student(s): ") # Ask user to specify their role.
clientSocket.send(message.encode()) # Encode and send the role to the server.
return message # Return the user's input.

Sends user credentials (ID and password) to the server.

def submitCredentials(clientSocket):
message = input("Enter Your Access ID: ") # Ask for user ID.
clientSocket.send(message.encode()) # Encode and send the ID to the server.
message = input("Enter Your Password: ") # Ask for password.
clientSocket.send(message.encode()) # Encode and send the password to the server.
pass # Placeholder, currently not performing any additional operations.

image9.png
56 # Sends a command from the user to the server.
57 def submitChoice(clientSocket):

58 message = input('\nCommand:") # Ask for a command.

59 clientSocket.send(message.encode()) # Encode and send the command to the server.
60 return message # Return the user's input.

61

62 # Authenticates the user based on ID and password.
63 def authentication(id, password, team):

64 if id in team and team[id] == password:

65 mail = "granted" # If credentials match, set 'mail' to 'granted'.

66 access = True # Access is granted.

67 else:

68 mail = "not granted" # If credentials don't match, set 'mail' to 'not granted'.
69 access = False # Access is denied.

70 return mail, access # Return the result of authentication and access status.
71

72 ### Server-side functions.

73

74

75 # Establishes a server socket and listens for incoming connections.
76 def establishServer(port):

77 serverPort = port # Set the server port to the provided 'port'.

78 # Create a TCP/IP socket for the server.

79 serverSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

80 serverSocket.bind(('', serverPort)) # Bind the socket to the specified port.
81 serverSocket.listen(1) # Set the socket to listen for one incoming connection.
82 print('The server is ready') # Indicate that the server is ready.

83 return serverSocket # Return the created server socket.

84

85 ### Quiz-related functions.

86

87

88

89 # Defines whole set of quiz questions.
90 def quizQuestions():

91 questions = [

92 "Are programming bugs actually tiny insects that live in your computer?",

k] "Is the internet just a series of tubes connected by hamsters on wheels?",

94 "Did the computer catch a cold because it had too many windows open?",

95 "Is the cloud in the sky responsible for storing all our data?",

96 "Can you turn your computer off and on again to solve all of life's problems?",
97 "Did the computer go to therapy to resolve its motherboard issues?",

98 "Is the keyboard the modern version of a piano for tech-savvy musicians?",
99 "Does the Wi-Fi signal get stronger if you water your router regularly?",
100 "Can you communicate with aliens through Morse code using your microwave?",
101 "Did the smartphone graduate from the University of App-lications?",

102 1

103

104 return questions
105

106 # Defines answers for each question.

107 def quizAnswers():

108 answers = ["F", "F", "T", "F", "T", "F", "T", "F", "F", "T"]
109 return answers

110

image10.png
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Randomly selects a smaller subset of questions and returns the randomized set.
def shuffler(qQ, gA):

shuffled_indices = list(range(len(qQ)))

random. shuffle(shuffled_indices)

shuf_Q = [gqQ[i] for i in shuffled_indices]
shuf_A = [gA[i] for i in shuffled_indices]
return shuf_Q, shuf_A

Conducts the quiz with the client, collecting their answers.
def actuateQuiz(quizLength, shuf_Q, connectionSocket):
quizUserAnswers = ["@", "@", "0"] # Initialize a list to store user's answers.

count = @ # Initialize a counter for the number of questions asked.
while True:
if count < quizlength:
if count ==
connectionSocket.send(shuf_Q[count].encode()) # Send the first question.
quizUserAnswers [count] = connectionSocket.recv(1024).decode() # Receive the answer.
count += 1 # Increment the counter.
continue
elif count >= 1:
mail = connectionSocket.recv(1024).decode() # Receive the next command from the client.
if mail == "nextQuestion":
connectionSocket.send(shuf_Q[count].encode()) # Send the next question.
quizUserAnswers [count] = connectionSocket.recv(1024).decode() # Receive the answer.
count += 1 # Increment the counter.

continue
elif mail == "exit":

break # Exit if the command is ‘'exit'.
else:

continue # Continue for any other input.
else:
break # Break the loop after all questions are asked.

return quizUserAnswers # Return the list of user's answers.

Calculates the grade based on the answers received.
def grader(quizUserAnswers, shuf_A, quizLength):
scoreCount = @ # Initialize the score count.
for count, answer in enumerate(quizUserAnswers):
if answer == shuf_A[count]:
scoreCount += 1 # Increment the score for each correct answer.
grade = (scoreCount / quizLength) * 100 # Calculate the grade percentage.
grade_s = format(grade, ".2f") # Format the grade to two decimal places.

return grade_s # Return the grade as a string.
Writes the user's grade to a specified file.

def gradeWriter(id, grade, fileName):
with open(fileName, 'a') as file:

file.write("User ID: " + id + " Grade: " + grade + "\n") # Append the user ID and grade to the file.

image11.png
166
167
168
169
170
171
172
173
174
175

Reads and displays the grades from a file.
def gradeReader(fileName):
print("\n") # Print a newline for formatting.
with open(fileName, 'r') as file:
content = file.read() # Read the entire content of the file.
print(content) # Print the content (grades).
pass # Placeholder, currently not performing any additional operations.

image12.png
B Windows PowerShell X + v - (u]

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka
.ms/PSWindows

PS C:\Users\Hadi> cd OneDrive\Desktop\serverProject

PS C:\Users\Hadi\OneDrive\Desktop\serverProject> python3 server.py
The server is ready

image13.png
B Windows PowerShell X + v (u]

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka
.ms/PSWindows

PS C:\Users\Hadi> cd OneDrive\Desktop\serverProject
PS C:\Users\Hadi\OneDrive\Desktop\serverProject> python3 client.py

Are you an Instructor(i) or Student(s):

image14.png
Are you an Instructor(i) or Student(s): s
Enter Your Access ID: GV8096

Enter Your Password: pass2

granted

Command List (command): Take Quiz (takeQuiz) Exit (exit)

Command : takeQuiz

beginning. ..
Are programming bugs actually tiny insects that live in your computer?

answer (T or F): T

Command List (command): Next Question (nextQuestion) Exit (exit)
Command : nextQuestion

Is the internet just a series of tubes connected by hamsters on wheels?

answer (T or F): F

Command List (command): Next Question (nextQuestion) Exit (exit)

image15.png
gradeStored.txt & X funspy server.py clientpy

User ID: HB5610 Grade: 66.67
User HB5610 Grade: 100.00
User HB5610 Grade: 33.33
User HB5610 Grade: 100.00
User HB5610 Grade: 66.67
User GVBe96 Grade: 66.67
User GVBe96 Grade: 66.67
User GV8896 Grade: 33.33

PN O EWN R

image16.png
Command : nextQuestion
Is the keyboard the modern version of a piano for tech-savvy musicians?

answer (T or F): F
Command List (command): Get Grade (getGrade) Exit (exit)
Command : getGrade

You have finished the quiz

Your Grade is: 33.33%

image1.png

image2.svg

image3.png
©oO~NOU A WNR

VUl ulU D DD DD DDDDDWWWWWWWWWWNNNNNNNNNNRRRRERRRPERRRR
PWNRFRPOO®MIINOODUDWNROOOIIIIDUDL,WNROO®OIIIIDUDSDWNR®O®ONOUDAWNRSS

LIBRARIES
import socket
import random

import funs # import 'funs' containing the required functions

the number of quiz questions is set to 3
quizlLength = 3

get the quiz questions and answers from module 'funs'
gQ = funs.quizQuestions()
gA = funs.quizAnswers()

define the user credentials for authentication
team = {"GP8542": "passA", "HB5610"

"passl", '"GV8096": "pass2", "GF7068"

"pass3"}

lead = {"GP8542": "passA", "HB5610": "passl", "GV8096": "pass2", "GF7068": "pass3"}

the file name where grades are stored

fileName = 'gradeStored.txt'

get port from the user input
port = funs.getPort()

establish the server socket connection
serverSocket = funs.establishServer(port)

main server loop
while True:

accept incoming connection and get the connection socket and address

connectionSocket, addr = serverSocket.accept()
addy = connectionSocket

access = False
messageAccess = 0

authentication loop
while access False:
while True:
get the access type from mailbox
messageAccess = funs.mailBox(addy)

if messageAccess == "i" or messageAccess == "

get user ID and password from mailbox
userId = funs.mailBox(addy)
userPass = funs.mailBox(addy)

authenticate user and get access status

s":

mail, access = funs.authentication(userId, userPass, team)

send the authentication result to the client

funs.postMan(mail, addy)
break

else:
continue

