#### **Joint Development Project: Automotive Electronics and Sensors**



David Barón-Vega, Matthias Berger, Daniel Forta, Ines Hornung, Lukas Reiling, Sandro Rogowski, Laxmi Shankar, Hadi Syed, Hibah Syed, Roy Taylor

# Outline

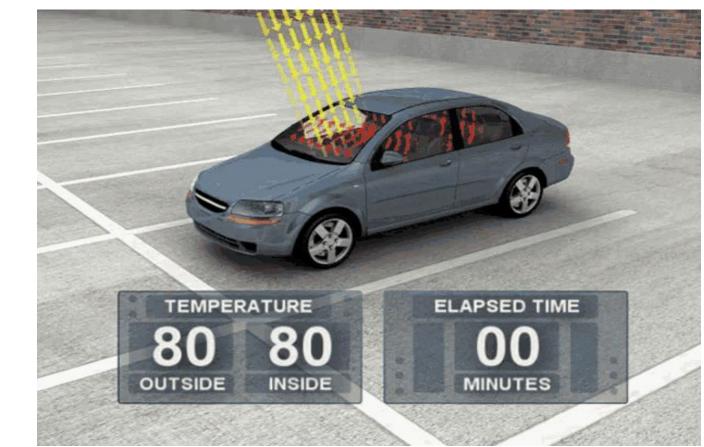
- → Project Overview
- → Team
- → Hardware Connections
- → System Architecture
- → System Components
  - Schematics
  - **PCB**
  - Sensors
  - GSM
- → Bill of Materials
- → Software
- → Testing
- → Demonstration

# **Project Overview**

Problem:

• Children trapped in a locked car at risk of heatstroke death




Solution:

 An intelligent emergency system detects child presence, monitors cabin temperature, and alerts car owner and authorities when critical temperature is reached



# **Dangers of Car Overheating**





# Why do children get left behind in cars? (HRW)

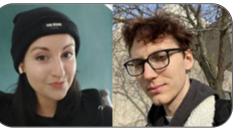


# **COIL Team Leads**

Project Leaders: Prof. Dr. Alazzawi, Prof. Dr. Thelen



Wayne State University ECE Chair: Prof. Dr. Ismail




Teaching Assistants: Jonas, Erik, Leila, Jan



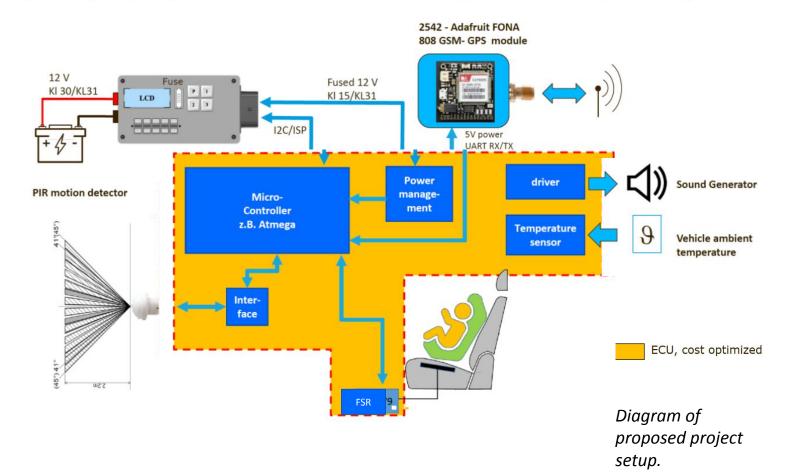
**COIL Team** 

Project Managers: Ines, Roy



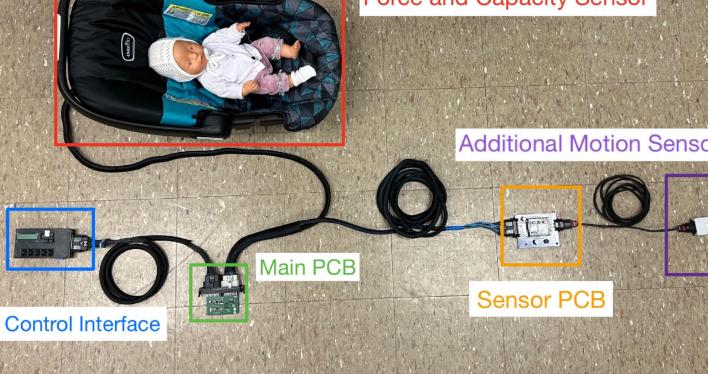
Quality and Test Managers: Matthias, Hibah

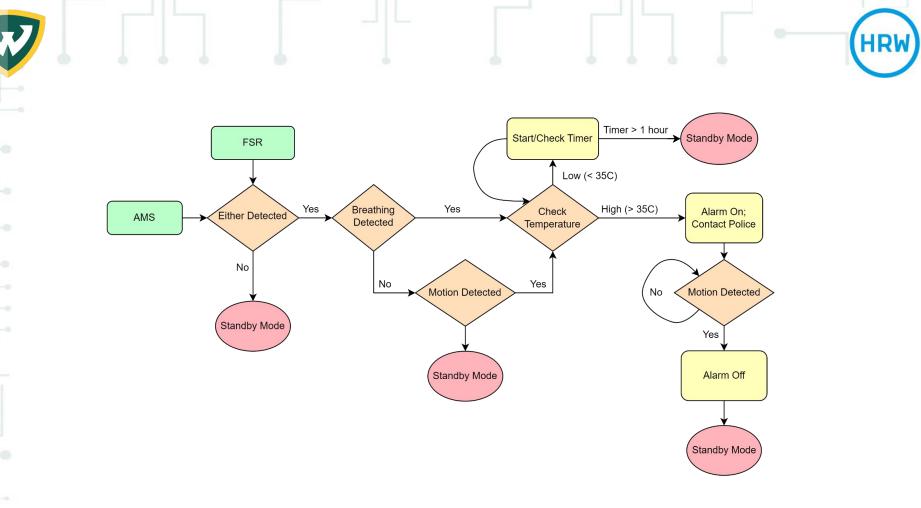



Hardware Developers: Daniel, Lukas



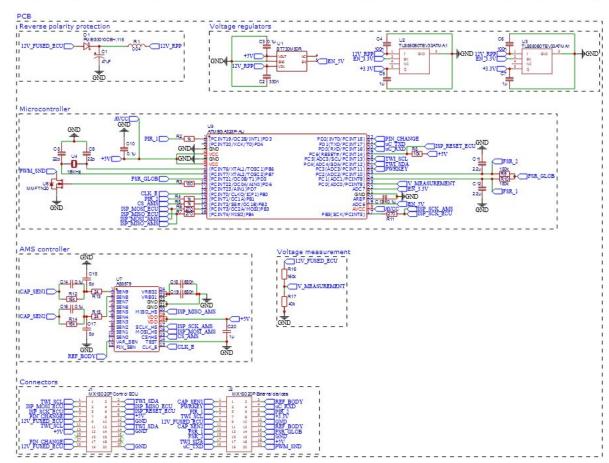
Software Developers: David, Sandro, Laxmi, Hadi





### **Hardware Connections**

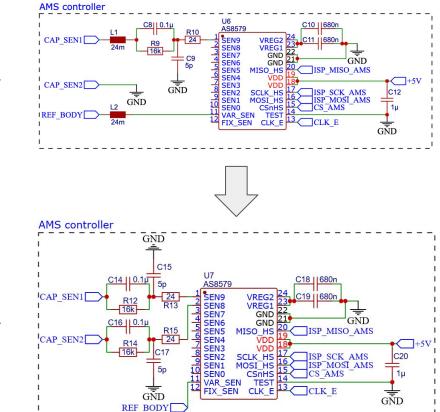


# **Hardware Connection**





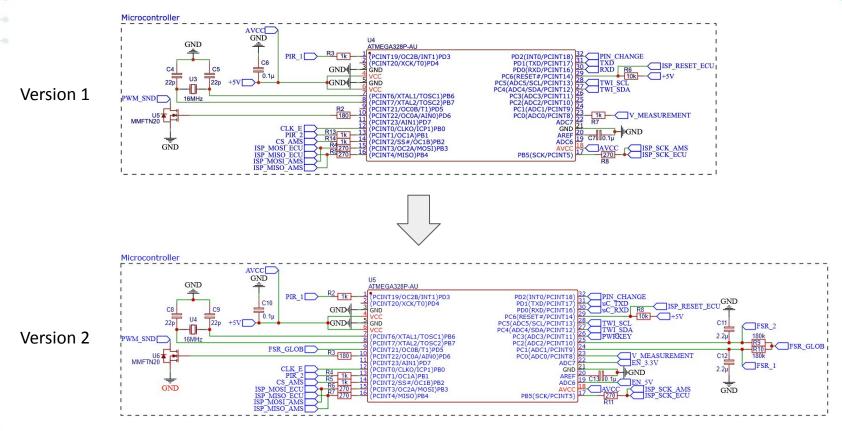




# **System Components**

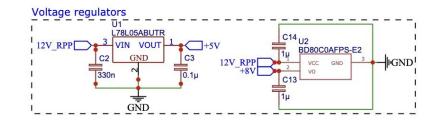
## **Main PCB Schematics**

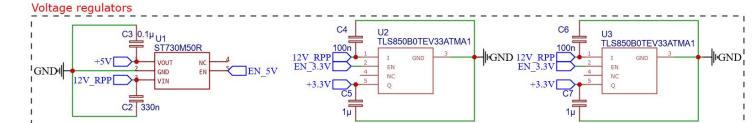


12


#### **Main PCB Schematics**




Version 1

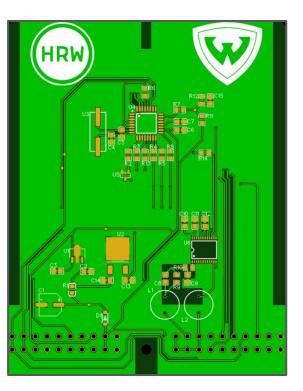

Version 2





# **Main PCB Schematics**

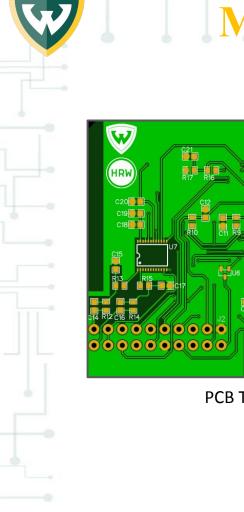




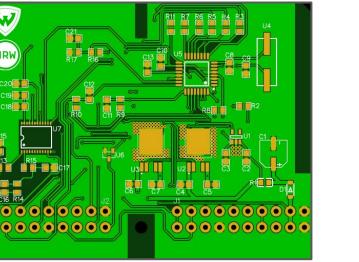

Version 2


Version 1

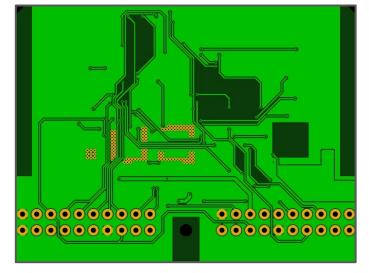



# Main PCB Design Version 1

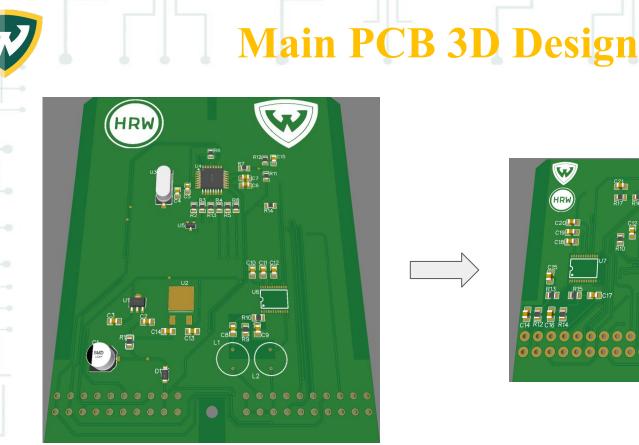


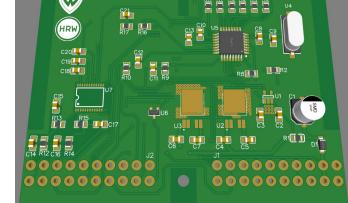

PCB Top Layer




PCB Bottom Layer



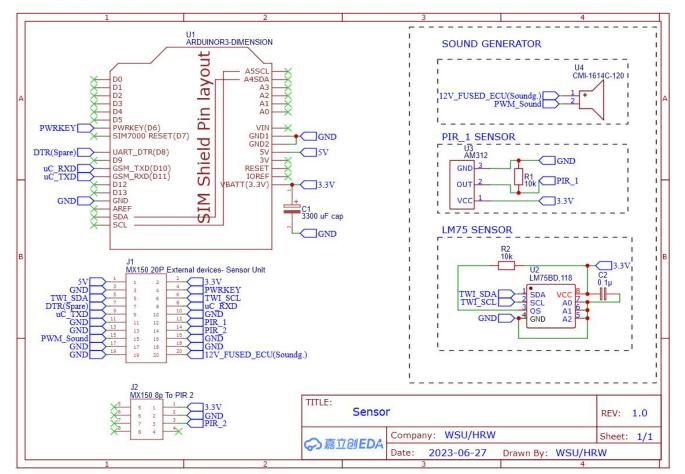

# Main PCB Design Version 2



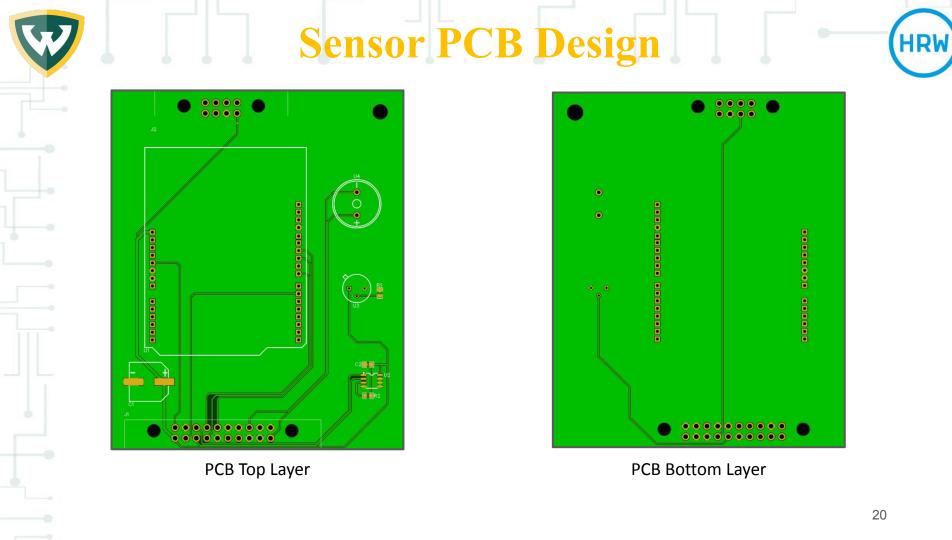

PCB Top Layer



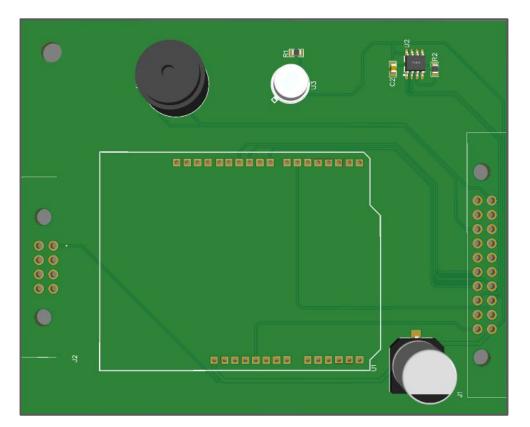
PCB Bottom Layer







#### 3D Design Revision 2

This version 40% smaller than Revision 1

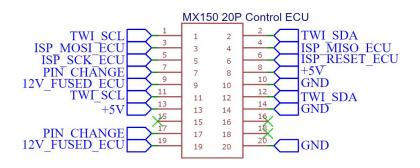

# **Sensor PCB Schematics**



19



# Sensor PCB 3D Design




# **ECU - Control Interface**



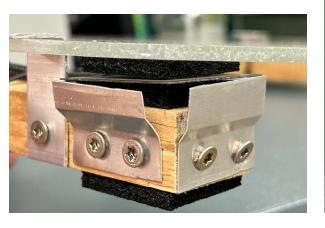
- 12V power supply
- Protected via blade fuse
- 6-pin ISP header for programming
- MOLEX connector
- Switches:
  - Simulation of terminal 15
  - Go through menu options
- Error handling
  - Displays error codes

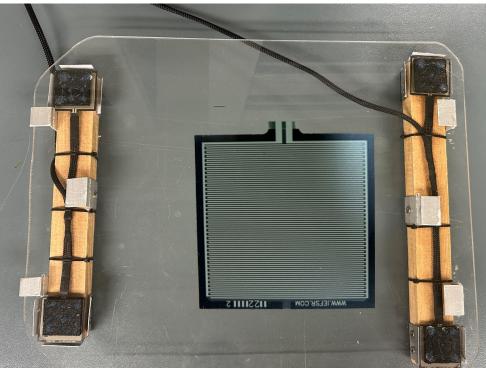




# **ECU Menu**

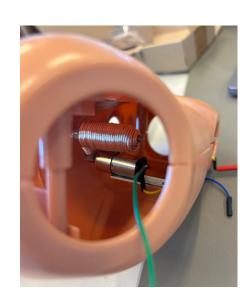
- [0] Status (Offline/Active)
- [1] System (Detection off/Child detected/No child detected)
- [2] Force
- [3] Breathing FSR
- [4] AMS
- [5] Breathing AMS
- [6] Motion Sensor (Detection off/No motion/Motion detected)
- [7] Temp (Detection off/Out of range/"temp\_value")
- [8] Error Codes
- [9] Detection Status (Dangerous heat/Child left alone/etc.)

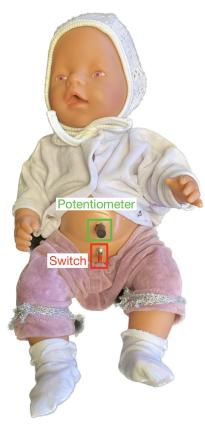

# **Capacitive Sensor**


- AS8579 Automotive Qualified [AEC-Q100]
- Temperature range of -40°C to 125°C
- SPI interface
- Diagnostics available
  - Enables error handling
- Up to 10 independent measurement lines possible
  - $\circ$  10 SEN lines
- VAR & FIX\_SEN function to avoid parasitic influences






- 4 Sensors (every corner)
- Floating construction
- Detecting child breathing

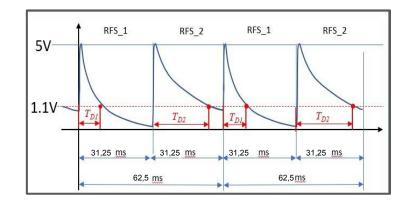




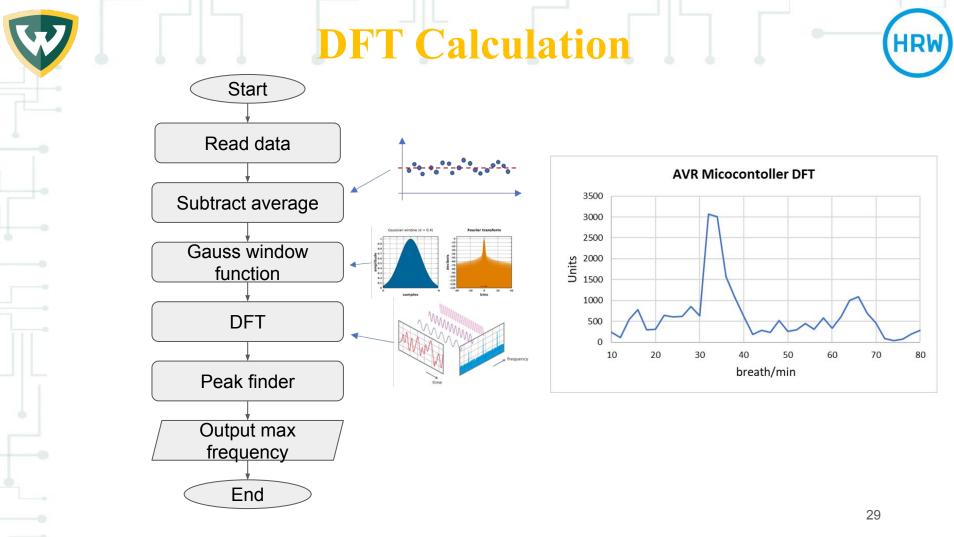

- Prepared doll to simulate the breathing
- 85g weight moves around
- Speed change over Poti








Steps:

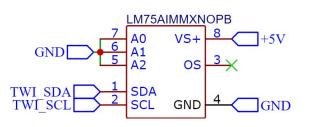

- Pin 1 charges the capacity
   Pin 2 is floating
- Pin 1 is now Input and floating. Discharges the capacity with force on the FSR
- Timer measures time with counting

```
ADMUX &= \sim(1 < MUX0);
                                        //Input C4 at AIN1
ADMUX |= (1<<MUX2);
                                        //Input C4 at AIN1
DDRC = (1 << 1);
                                         //Pin C1 Output
PORTC &= ~(1<<1);
                                         //Pin C1 LOW for holding the other capacitor low
DDRD &= \sim(1 <<5);
                                         //Pin D5 HiZ
DDRC = (1 << 2);
                                        //Pin C2 Output
                                         //Pin C2 HIGH for loading the capacitor
PORTC = (1 < 2);
reset = 1:
                                         //set temp reset to 1
for (int i = 0; i <= 20000; i++);</pre>
                                        //wait 2*10000 system cycles - 2*625us
if (reset == 1)
                                        //if temp reset value is 1
    start ticks[3] = TCNT1;
                                         //save timer value
DDRC &= \sim(1 << 2);
                                        //Pin C2 HiZ - Input
DDRD = (1 << 5);
                                        //Pin D5 Output
PORTD &= ~(1<<5);
                                         //Pin D5 LOW
                                         Rea
                 Pin 2
  Microcontroller
                            R
                                                 FSR
         Timer
                 Pin 1
                                     V_{\rm C}
                                      C
                RX/TX
                                     USB
```

- 4 Measures every 125 ms
- Building difference of FSR1 and 2
- Adding the two differences
- Dividing by two
- This average values are used for DFT



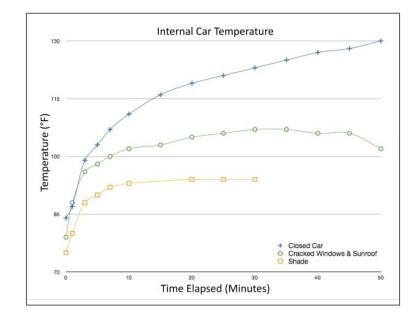
$$T = |T_{D1} - T_{D2}|$$




# **Temperature Sensor**

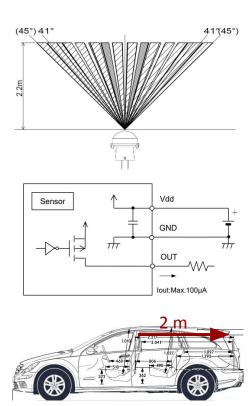
- LM75
- Measure the temperature within the vehicle
- Temperature accuracy of:
  - $\circ$  ±2 °C from -25 °C to +100 °C
- I<sup>2</sup>C bus interface
- Displays temperature value on LCD
- High temperature threshold: 35°C





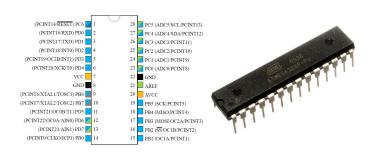



## **Temperature Research**

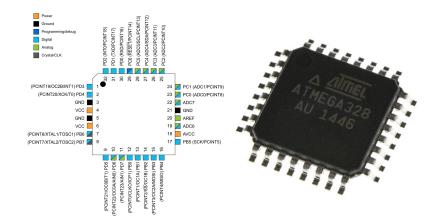

- What temperatures are dangerous?
  - Uncompensable temp is 37°C (98.6°F)
  - 40-42°C (104-107.6°F) causes cardiac organ failure and neurological damage






# **Motion Sensor**

- Detection range: 2.2m
- Able to withstand heat up to 80°C
- 12uA of consumption when active
- Sends a high or low signal




# ATmega

28-Pin ATmega328 contains 6 ADC ports



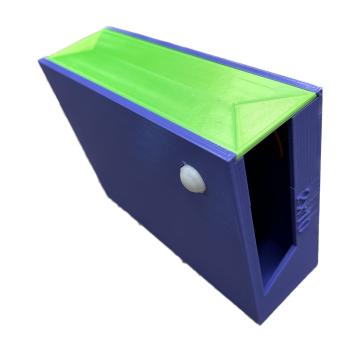
# 32-Pin ATmega328 can handle two extra ADC ports



# **GSM/SIM Module**

- Power-saving mode
- Communicates over UART
- AT commands
- HTTP and MQTT Protocols
- GPS data capabilities
- Usage of T Mobile/Telekom IOT sim card

#### SIM7000A GSM shield:




# **Sensor PCB Housing**



x9lom

DEETS J 290



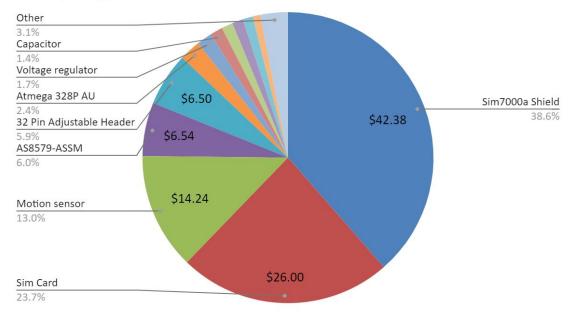
# **PIR Sensor with Housing**



- Example for a scalable system
- Connected via 8 Pin Molex

## Quiescent Current

| Number of pieces | Part Number | Component                | Quiescent Current (µA) |
|------------------|-------------|--------------------------|------------------------|
| 1                | 1           | Atmega 328P AU           | 30                     |
| 1                | 2           | LM75B                    | 0.2                    |
| 1                | 4           | NMOS (SOUND)             | 1                      |
| 1                | 7           | Voltage regulator (5V)   | 10                     |
| 2                | 8           | Voltage regulator (3.3V) | 1                      |
| 1                | 9           | Voltage measurement      | 60                     |
| 1                | 10          | PIR                      | 12                     |
|                  |             | Sum                      | 114.2                  |


## **Bill of Materials**

| 1  |     |
|----|-----|
| (Н | RW) |
|    |     |

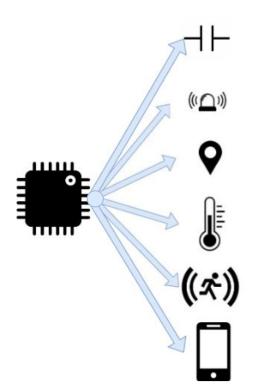
| 'art number ╤ I | Number of pieces \Xi | Component 📼                  | Value <del>-</del> | Component 👳                                  | Dealer 📼         | Order number 📼       | Order link 🔫                                              | Net piece<br>price<br>(price when =<br>buying 1000<br>pieces) | Total<br>(Euros) = | Total<br>(USD) |
|-----------------|----------------------|------------------------------|--------------------|----------------------------------------------|------------------|----------------------|-----------------------------------------------------------|---------------------------------------------------------------|--------------------|----------------|
| 1               | 1                    | Sim7000a Shield              | -                  | -                                            | digikey          | DFR0763              | https://www.digikev.com/en/products/detail/dfrobot/DFR    | 37.7182€                                                      | 37.7182€           | \$42.3         |
| 2               | 1                    | Sim Card                     |                    | (30 days) of service: sms, calling, and data | SpeedTalk Mobile | N/A                  | https://speedtalkmobile.com/pay-as-you-go-phone-plans/    | 23.1400€                                                      | 23.1400€           | \$26.0         |
| 3               | 2                    | Motion sensor                | 2                  | 12 E                                         | digikey          | EKMC1603113          | EKMB1393113K Panasonic Electric Works   Sensors, Transc   | 6.3368€                                                       | 12.6736€           | \$14.2         |
| 4               | 1                    | AS8579-ASSM                  | -                  | Controller capacitive sensor                 | Mouser           | 985-AS8579-ASSM      | https://www.mouser.de/ProductDetail/ams-OSRAM/AS857       | 5.8400€                                                       | 5.8400€            | \$6.5          |
| 5               | 1                    | 32 Pin Adjustable Header     | -                  | -                                            | digikey          | N/A                  | D01-9923246 Harwin Inc.   Connectors, Interconnects   Di  | 5.7850€                                                       | 5.7850€            | \$6.5          |
| 6               | 1                    | Atmega 328P AU               | -                  | Microcontroller                              | Farnell          | 1715486              | https://de.farnell.com/microchip/atmega328p-au/mcu-8bi    | 2.3100€                                                       | 2.3100€            | \$2.5          |
| 7               | 2                    | Voltage regulator            | -                  | GPS/GSM module                               | Mouser           | 726-TLS850B0TEV33ATM | https://www.mouser.com/ProductDetail/Infineon-Technole    | 0.84€                                                         | 1.6840€            | \$1.8          |
| 8               | 1                    | Capacitor                    | 100µ               | 12 CONTRACTOR 12                             | Mouser           | 80-A784MS107M1JLAS28 | https://www.mouser.com/ProductDetail/80-A784MS107M        | 1.3528€                                                       | 1.3528€            | \$1.5          |
| 9               | 2                    | Capacitor                    | 0.1µ               |                                              | Mouser           | 80-C0805Y104J5RAUTO  | https://www.mouser.com/ProductDetail/80-C0805Y104J5F      | 0.6141€                                                       | 1.2282€            | \$1.3          |
| 10              | 1                    | Sim Card (LTE Cat-M capable) | ) -                | 17                                           | SpeedTalk Mobile | N/A                  | https://www.amazon.com/dp/B07933LMZW?ref =cm_sw           | 1.1837€                                                       | 1.1837€            | \$1.3          |
| 11              | 2                    | Coil                         | 24mH               | 2                                            | Mouser           | 530-DRC-V-123K       | https://www.mouser.de/ProductDetail/Bel-Signal-Transform  | 0.5600€                                                       | 1.1200€            | \$1.2          |
| 12              | 1                    | Temperature Sensor           | -                  |                                              | Mouser           | 771-LM75BD118        | https://www.mouser.com/ProductDetail/771-LM75BD118        | 0.8099€                                                       | 0.8099€            | \$0.9          |
| 13              | 2                    | Resistor                     | 10k                | Thin film resistor                           | Mouser           | 603-RP0805FRE0710KL  | https://www.mouser.com/ProductDetail/603-RP0805FRE0       | 0.3115€                                                       | 0.6230€            | \$0.7          |
| 14              | 1                    | Piezo transducers            | 2                  | Sound generator                              | Mouser           | 490-CEM-1212S        | https://www.mouser.de/ProductDetail/CUI-Devices/CEM-1     | 0.4480€                                                       | 0.4480€            | \$0.5          |
| 15              | 1                    | Voltage regulator            | -                  | Microcontroller                              | Mouser           | 511-ST730M50R        | https://www.mouser.com/ProductDetail/STMicroelectroni-    | 0.45€                                                         | 0.4460€            | \$0.5          |
| 16              | 1                    | LM75BD                       | 2                  | Temperature sensor                           | Mouser           | LM75BD118            | https://www.mouser.de/ProductDetail/771-LM75BD118         | 0.3540€                                                       | 0.3540€            | \$0.4          |
| 17              | 1                    | NMOS                         | ж.<br>Э            | Driver sound generator                       | Mouser           | 637-MMFTN20          | https://www.mouser.de/ProductDetail/Diotec-Semiconduc     | 0.1650€                                                       | 0.1650€            | \$0.1          |
| 18              | 1                    | Quarz                        | 16MHz              | Microcontroller                              | Farnell          | 2467728              | https://de.farnell.com/abracon/abls2-16-000mhz-d4v-t/crv  | 0.1450€                                                       | 0.1450€            | \$0.1          |
| 19              | 3                    | Capacitor                    | 1u                 | -                                            | Farnell          | 1458907              | https://de.farnell.com/vageo/cc0805zky5v9bb105/konden     | 0.0440€                                                       | 0.1320€            | \$0.1          |
| 20              |                      | Capacitor                    | 680n               | Controller capacitive sensor                 | Farnell          | 2522227              | https://de.farnell.com/tdk/cga4i3x7r1e684k125ab/konden    |                                                               | 0.0958€            |                |
| 21              | 1                    | Capacitor                    | 0.33µ              | -                                            | Farnell          | 3581154              | https://de.farnell.com/murata/gcj219r71h334ka12d/konde    | 0.0900€                                                       | 0.0900€            | \$0.1          |
| 22              | 1                    | 16 MHz Crystal Oscillator    | 16MHz              | -                                            | digikey          | AS-16.000-18         | https://www.digikey.com/en/products/detail/raltron-elect  | 0.0890€                                                       | 0.0890€            | \$0.1          |
| 23              | 1                    | Diode                        | -                  | Reverse polarity protection                  | Farnell          | 3440039              | https://de.farnell.com/nexperia/pmeg3010ceh-115/schott    | 0.0716€                                                       | 0.0716€            | \$0.0          |
| 24              | 5                    | Capacitor                    | 0.1µ               |                                              | Farnell          | 3013476              | https://de.farnell.com/samsung-electro-mechanics/cl21b1   |                                                               | 0.0565€            | \$0.0          |
| 25              | 2                    | Capacitor                    | 5p                 | -                                            | Farnell          | 1759184              | https://de.farnell.com/multicomp/mc0805n5r0c500ct/kon     |                                                               | 0.0492€            | \$0.0          |
| 26              | 1                    | Capacitor                    | 47u                | Onboard filter                               | Farnell          | 4061829              | https://de.farnell.com/aishi/emk1em470e83d00r/kondens     | 0.0476€                                                       | 0.0476€            | \$0.0          |
| 27              | 2                    | Capacitor                    | 2.2µ               |                                              | Mouser           | 187-CL21A225KAFNNNE  | https://www.mouser.com/ProductDetail/Samsung-Electro-     |                                                               | 0.0440€            | \$0.0          |
| 28              | 2                    | Capacitor                    | 22p                | Microcontroller                              | Farnell          | 2310684              | https://de.farnell.com/multicomp/mc0805n220j500ct/kon     |                                                               | 0.0422€            |                |
| 29              | 3                    | Resistor                     | 270                | -                                            | Farnell          | 1576451              | https://de.farnell.com/multicomp/mchp05w4f2700t5e/dic     | 0.0065€                                                       | 0.0195€            | \$0.0          |
| 30              | 3                    | Resistor                     | 1k                 | -                                            | Farnell          | 2446904              | https://de.farnell.com/multicomp/mcwr08x1001ftl/dickscl   | 0.0053€                                                       | 0.0159€            | \$0.0          |
| 31              |                      | Resistor                     | 16k                | -                                            | Farnell          | 2073652              | https://de.farnell.com/multicomp-pro/mcmr08x1602ftl/ke    |                                                               | 0.0158€            |                |
| 32              |                      | Ferrit                       | 0.2                | HF ferrit                                    | Farnell          | 4141776              | https://de.farnell.com/abracon/afbc-g0805h-301-t/ferritpe |                                                               | 0.0148€            |                |
| 33              | 2                    | Resistor                     | 180k               | -                                            | Mouser           | 279-1623126-1        | https://www.mouser.com/ProductDetail/TE-Connectivity-H    |                                                               | 0.0120€            |                |
| 34              |                      | Resistor                     | 40k                | -                                            | Farnell          | 3975002              | https://de.farnell.com/vishav/crcw080540k0fkea/widersta   |                                                               | 0.0116€            |                |
| 35              |                      | Resistor                     | 24                 | 2                                            | Farnell          | 2447615              | https://de.farnell.com/multicomp/mcwr08x24r0ftl/dicksch   |                                                               | 0.0072€            |                |
| 36              |                      | Resistor                     | 160k               | -                                            | Farnell          | 2073655              | https://de.farnell.com/multicomp-pro/mcmr08x164-itl/ker   |                                                               | 0.0062€            |                |
| 37              |                      | Resistor                     | 10k                | -                                            | Farnell          | 2446870              | https://de.farnell.com/multicomp/mcwr08x1002ftl/dickscl   | -                                                             | 0.0053€            |                |
| 38              |                      | Resistor                     | 180                | -                                            | Farnell          | 2446900              | https://de.farnell.com/multicomp/mcwr08x1800ftl/dickscl   |                                                               | 0.0049€            |                |
|                 | -                    | 110313101                    | 100                |                                              | r ser real       | 2110500              | https://denamencom/indiacomp/indiacodo/indiacodo          | sum                                                           | 97.86€             |                |

## **Bill of Materials**

#### Total (USD) per Component



#### Can be cheaper:


- Sim card (via wholesale deal with supplier)
- Motion sensors

#### Software Scope

Goal: Read conditions car environment, record those in a database, and communicate that to vehicle owner

Expected Features:

- Integration of FSR
- Alert Child
- Integration of GSM/SIM Module
- Integration of Temperature Sensor
- Integration of Motion Sensor
- Mobile App Features
- Notify Parent and Emergency Services





## **GSM/SIM Module**

#### □ botletics / SIM7000-LTE-Shield (Public)

| ← Code ⊙ Issues 113 ी Pull requests ⊙ , | Actions 🖽 Projects 🎞 Wiki 🕛 Secu | ırity 🗠 Insights                     |                                         |
|-----------------------------------------|----------------------------------|--------------------------------------|-----------------------------------------|
|                                         | ਿ 🕈 master 👻 🕈 1 branch 🔊 4 tags |                                      | Go to file Code 🕶                       |
|                                         | botletics Add files via upload   |                                      | 15523b1 on Nov 28, 2022 🕥 1,029 commits |
|                                         | Code                             | Repointed Code to new repo location. | 9 months ago                            |
|                                         | 🖿 Media                          | Add files via upload                 | 4 years ago                             |
|                                         | PCB Files                        | Delete SIM7000 Shield v4.brd         | 5 years ago                             |
|                                         | SIM7000 Documentation            | Delete 1351B04SIM7000A.rar           | last year                               |
|                                         | Schematics                       | Add files via upload                 | 8 months ago                            |
|                                         |                                  | Initial commit                       | 6 years ago                             |
|                                         | README.md                        | Update README.md                     | 9 months ago                            |

#### **GSM/SIM Module**

```
void send_text(char* phone_number, char* message) {
    char at_command[50];
    sprintf(at_command, "AT+CMGS=\"%s\"", phone_number);
    //set to texting mode
    send_AT_command("AT+CMGF=1","OK");
    // send the SMS number wait until response
    send_AT_command(at_command,"OK");
    // send the SMS text wait until response
    uart_send_string(message);
    // send Ctrl+Z
    uart_send_byte(0x1A);
    uart_send_string("\r\n");
    //~fin~
```

int send\_AT\_command(const char\* at\_command,const char\* expected\_response)

```
currentExpectedResponse = expected_response;
// Send the AT command to the GSM module
currentCommandState = 1;
uart_send_string(at_command);
uart_send_string("\r\n");
timer@reset();
while ( timer@ms < 1500 || currentCommandState != 1);</pre>
```

```
if (currentCommandState == 1)
   // Do nothing, or do other tasks that need to be done
    // The interrupt service routine will handle the arrival of the response
else if (currentCommandState == 2)
    currentCommandState = 0:
    return 1;
else if (currentCommandState == 3)
    // Handle the error
   // Reset the state to COMMAND_NOT_SENT to send the next command
    currentCommandState = 0;
else if (currentCommandState == 4)
    currentCommandState = 0;
```

```
//handle received command back at original function
// end of function //
```

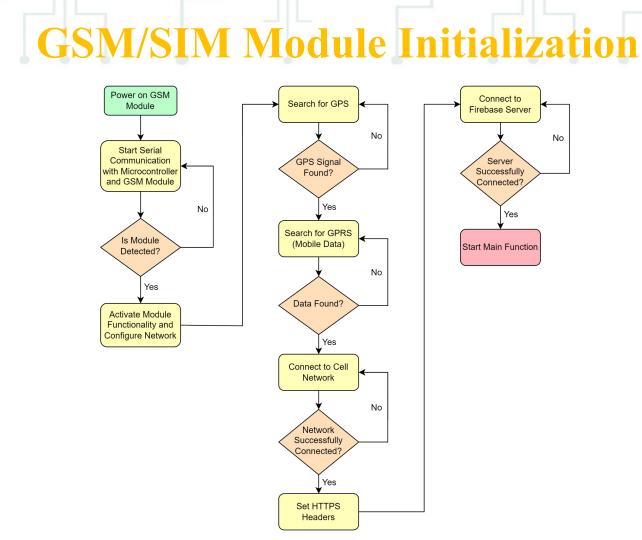
#### **UART Programming**

```
ISR(USART RX vect)
                                                               // Read the received byte from the UART data register
    rx buffer[rx write pos] = UDR0;
                                                               // Increment the received bytes counter
    rx count++;
    if (UDR0 == '\n')
                                                               // If a newline character is received, transmission done
        debug LED red();
        rx buffer[rx write pos] = '\0';
                                                               // Null-terminate the string
        rx write pos = 0;
        if (strstr(rx buffer, currentExpectedResponse) != NULL) // Check if the response matches the expected response
        {
            currentCommandState = 2;
        else if (strstr(rx buffer, "ERROR") != NULL) // Command is an error command
            currentCommandState = 3;
            debug_LED_yellow();
         }
        else
            currentCommandState = 4:
                                                               // Data is garbage
     }
     else
     {
        rx write pos++;
                                                               // Store the received byte in the buffer
                                                               // If we've reached the end of the buffer
        if (rx write pos >= RX BUFFER SIZE)
            rx write pos = 0;
```

#### **UART Programming**

```
pvoid handle_received_command()
```

```
free(parameters);
char *at command;
char **parameters = NULL;
int param count = 0;
// Check if command is a query or a set command
if (strstr(rx buffer, "OK") != NULL) {
    // The received message is "OK"
    return:
    else if (strstr(rx buffer, "ERROR") != NULL)
    // Command is an error command
    //error handling with pass of ERROR and the *command
    else if (strchr(rx_buffer, '=') != NULL)
    // Command is a set command
    at_command = strtok(rx_buffer, "=");
    char *param str = strtok(NULL, "=");
    // Tokenize the parameters based on commas
    char *token = strtok(param str, ",");
    while (token != NULL)
        parameters = realloc(parameters, sizeof(char*) * (param count + 1));
        parameters[param count] = token;
        param_count++;
        token = strtok(NULL, ",");
```


```
else if (strchr(rx_buffer, '?') != NULL)
{
// Command is a query
at_command = strtok(rx_buffer, "?");
parameters = NULL; // No parameters for a query command
}
else
{
// Command is a basic command with no parameters or query
at_command = rx_buffer;
parameters = NULL;
return;
}
```



#### **GSM/SIM Module**

Sent UART information to GSM:

AT+CMGF=1 AT+CMGS="5862224507" This is the message text DAT+CMGF=1









#### **GSM GPS: ATCommands**

---> AT+CGNSINF

<--- +CGNSINF: 1,1,20230607191508.000,42.295815,-83.434215,212.600,0.00,0.0,1,

**Result:** 

**ATCommand:** 

Latitude: 42.295814 Longitude: -83.434219 Speed: 0.00 Heading: 0.00 Altitude: 212.60

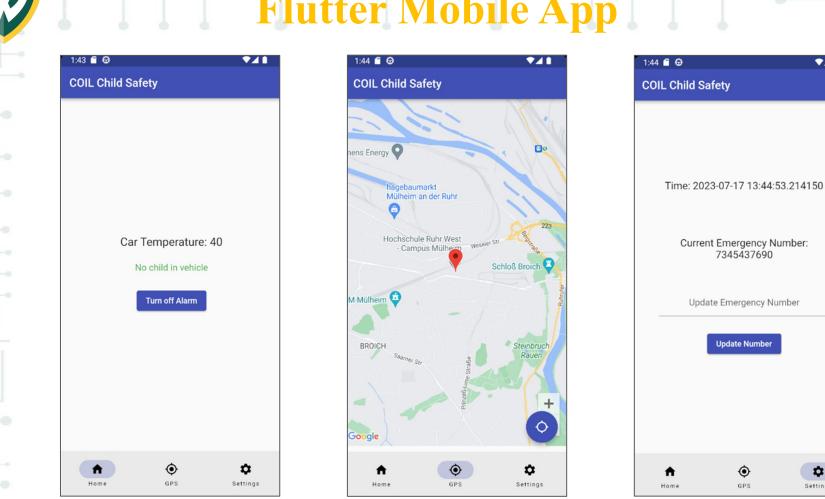
#### **GSM HTTP: ATCommands**

```
---> AT+CBC
<--- +CBC: 0,74,3969
---> AT+SHDISC
<--- ERROR
---> AT+CSSLCFG="sslversion",1,3
<--- OK
---> AT+SHSSL=1,""
<--- OK
---> AT+SHCONF="URL", "https://fir-test-93ea5.firebaseio.com"
<--- OK
---> AT+SHCONF="BODYLEN", 1024
<--- OK
---> AT+SHCONF="HEADERLEN", 350
<--- OK
---> AT+SHCONN
<--- OK
---> AT+SHSTATE?
<--- +SHSTATE: 1
---> AT+SHCHEAD
<--- OK
---> AT+SHREQ="/PhoneNumber.json",1
<--- OK
<---- +SHREQ: "GET", 200, 12
```

| HTTP status:        | 200                         |
|---------------------|-----------------------------|
| Data length:        | 12                          |
| >                   | AT+SHREAD=0,12              |
| <                   | OK                          |
| <                   | +SHREAD: 12                 |
| <                   | "7342624678"                |
| >                   | AT+SHDISC                   |
| <                   | OK                          |
|                     |                             |
|                     | Server Values:              |
| G https://fir       | test-93ea5.firebaseio.com   |
| <b>C</b> 11(p3.)/11 |                             |
| https://fir         | -test-93ea5.firebaseio.com/ |
|                     | 1 m m                       |

- Alarm: false
- Latitude: 33
- Longitude: 112
- PhoneNumber: "7342624678"
- State: 3
- Temperature: 70

#### **Flutter Mobile App**


**\***41

۲

GPS

•

Settings



# **GSM HTTP Protocol and Limitations**



- Continuously running HTTP slows the sim module to a halt.
  - $\circ$  ~ A more sophisticated HTTP client is necessary. Possible solution: SBC
  - Instead of continuously updating server, sending texts from temperature and position
  - SSL certificate in modern day secured HTTP services contribute to the delay
- On the ATmega328 HTTP Request Times
  - Server connection: 22 seconds
  - HTTPs GET: 34 seconds
  - HTTPs POST: 53 seconds





#### **Test Summary**

It contains a SIM card slot and is compatible with EII and US GSM and GPS standards

| Example Scre | enshot |
|--------------|--------|
| shows only 4 | 0/145  |
| TEST IDc     |        |

| ID-TST 75         | ID-VLH 63 | It contains a SIM card slot and is compatible with EU and US GSM and GPS standards                      | GD   | GD   | GD   |
|-------------------|-----------|---------------------------------------------------------------------------------------------------------|------|------|------|
| ID-TST 76         | ID-VLH 64 | sound generator should be connected with an automotive compatible connector to the wiring harness       | GD 🔻 | GD 🔻 | GD 👻 |
| ID-TST 77         | ID-VLH 65 | use SIM7000E NB-IoT/LTE/GPRS/GPS Expansion Shield                                                       | NT * | NT   | NT * |
| ID-TST 78         | ID-VLH 66 | specifications of the C-style guide [2] must be followed                                                | NT T | NT * | NT * |
| ID-TST 79         | ID-VLH 67 | diagram of programm sequence of alarm system should be used                                             | NT * | NT   | NT * |
| ID-TST 80         | ID-VLH 68 | diagram with statistics of heatstroke death of children in vehicel in USA                               | NT   | NT   | NT T |
| ID-TST 81         | ID-VLH 69 | (optional) open windows of the car by 2.5cm if it is too hot inside the car                             | NP   | NP   | NP   |
| ID-TST 82         | ID-BLH 1  | create a prototype of an ECU                                                                            | NT * | NT   | NT * |
| ID-TST 83         | ID-BLH 2  | development of an ECU designed for use with the vehicle components                                      | NT   | NT   | NT   |
| ID-TST 84         | ID-BLH 3  | investigated accordingly and documented by suitable functional tests                                    | NT T | NT T | NT * |
| ID-TST 85         | ID-BLH 4  | control unit must not exceed standby current consumption with passive module (300 µA)                   | NP   | NP   | в    |
| ID-TST 86         | ID-BLH 5  | control unit should contain the latest electronic components that are freely available on the market    | NT * | NT   | NT * |
| ID-TST 87         | ID-BLH 6  | ATMega should be used as controller                                                                     | B 👻  | в    | в    |
| ID-TST 88         | ID-BLH 7  | component selection must be made with the best possible cost/benefit ratio                              | NT   | NT   | NT 👻 |
| ID-TST 89         | ID-BLH 8  | all critical values of electronic components are to be designed under "worst case"                      | NP   | NP   | NP 🔻 |
| ID-TST 90         | ID-BLH 9  | control unit designed to ensure its full functionality over at least 10000 cycles of operation          | NT T | NT T | NT * |
| ID-TST 91         | ID-BLH 10 | Proof of compliance with all requirements                                                               | NT * | NT   | NT * |
| ID-TST 92         | ID-BLH 11 | system must be designed for operating temperatures between -20°C and +80°C                              | NP   | в    | в    |
| ID-TST 93         | ID-BLH 12 | operating voltage range is 9 V - 16 V.                                                                  | NT 🔻 | NT   | NT T |
| ID-TST 94         | ID-BLH 13 | control unit must be designed with reverse polarity protection                                          | NP   | NP   | P 👻  |
| ID-TST 95         | ID-BLH 14 | control unit measures supply voltage at regular intervals (error entry when range is exceeded or below) | NP   | NP   | Р 🔻  |
| ID-TST 96         | ID-BLH 15 | control unit must be fully functional after the drop test                                               | NP 👻 | NP   | Р 🔻  |
| ID-TST 97         | ID-BLH 16 | parts for actuators selected so that temp increase compared to the ambient temp is limited to 30 K      | B 👻  | B 👻  | B 👻  |
| ID-TST 98         | ID-BLH 17 | housing for protection against moisture IP54 shall be used for the control unit                         | в    | в    | в    |
| ID-TST 99         | ID-BLH 18 | connectors waterproof versions are to be used                                                           | NT   | NT   | NT T |
| ID-TST 100        | ID-BLH 19 | control unit's weight needs to be documented                                                            | NT * | NT   | NT * |
| ID-TST 101        | ID-BLH 20 | control unit must be designed in such a way that mounting in the higher-level component is possible     | NT   | NT   | NT * |
| ID-TST 102        | ID-BLH 21 | EMC requirements result from the standard tests                                                         | NT T | NT T | NT * |
| ID-TST 103        | ID-BLH 22 | measures for the next maturity level are to be presented                                                | NT * | NT   | NT * |
| ID-TST 104        | ID-BLH 23 | software is to be versioned                                                                             | B *  | B    | P *  |
| <b>ID-TST 105</b> | ID-BLH 24 | documents in table (4.1) to be created/updated for each maturity level                                  | NT T | NT T | NT T |
| ID-TST 106        | ID-BLH 25 | product specifications describe how requirements of user requirement specifications are implemented     | NT * | NT   | NT * |
| ID-TST 107        | ID-BLH 26 | all requirement IDs listed in the product specification                                                 | NT * | NT   | NT * |
| ID-TST 108        | ID-BLH 27 | all tests mentioned in the test specification are to be listed                                          | NT T | NT   | NT * |
| ID-TST 109        | ID-BLH 28 | A complete circuit diagram is created for each maturity level                                           | в    | в    | Р 🔻  |
| <b>ID-TST 110</b> | ID-BLH 29 | software is documented exclusively as source code                                                       | NT * | NT   | NT * |

TEST IDs

- **BLH: Basic Requirement Specification** ٠
- VLH: Model Requirement Specification ٠
- NRM: Standard Test •

ID-VIH 63

ID-TST 75

| В  | passed                      |
|----|-----------------------------|
| BL | passed last time            |
| Р  | planned                     |
| PN | planned but not carried out |
| NP | not performable             |
| NT | no test needed              |
| F  | failed                      |
| GD | grounded by design          |

## **Hardware Component Tests**

- Testing the capacitive sensor to detect the breathing
- Respiration is not measurable



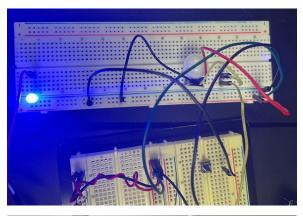






- Seat belt fastened
  - $\circ$  No detection
- Measurement on level ground
  - Respiration measurable








## **Hardware Component Tests**



- GSM Module (VLH 33-36)
  - $\circ \quad \text{SIM card slot} \\$
- Temperature Sensor (VLH 46-51)
  - Room air temperature, connected to the ECU
  - Measurement range
- PIR Sensor (VLH 52-56)
  - Motion in the car
  - Detection Range





#### **Software Functionality Tests**

- Tests conducted on Mobile App
  - ID-NRM 13: Unit testing
  - ID-NRM 12: Integration testing
  - ID-NRM 14: Functional testing
  - ID-NRM 16: Regression testing
  - ID-NRM 17: Stress testing
  - ID-NRM 11: Acceptance testing
  - ID-NRM 18: Usability testing
- Test conducted on GSM
  - ID-NRM 14: Functional testing
  - ID-NRM 17: Stress testing
  - ID-NRM 19: Network Reliability







Acceptance Testing

Unit Testing

System Testing

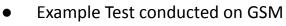


## **Software Functionality Tests**

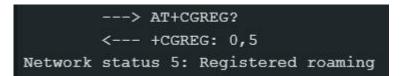
**741** 

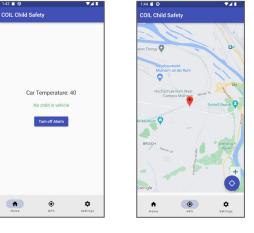
\$

1:44 🖬 🕀


**COIL Child Safety** 

Time: 2023-07-17 13:44:53.214150


Current Emergency Number: 7345437690


Update Emergency Number

- Example Tests conducted on Mobile App
  - ID-NRM 13: Unit testing



• ID-NRM 19: Network Reliability





#### **Future Ideas**

- Connect to car to open windows when child is detected in critical temperature
- More sophisticated HTTP client: SBC
  - App integration
- Consider other sensor technologies for improved detection



# **Demonstration**

#### References

- Jennifer K. Vanos, Ariane Middel, Michelle N. Poletti & Nancy J. Selover (2018) Evaluating the impact of solar radiation on pediatric heat balance within enclosed, hot vehicles, Temperature, 5:3, 276-292, DOI: 10.1080/23328940.2018.1468205
- Heat Stress in Motor Vehicles: A Problem in Infancy K. King; K. Negus; J. C. Vance; Pediatrics (1981) 68 (4): 579–582.; <u>https://doi.org/10.1542/peds.68.4.579</u>
- Gibbs LI, Lawrence DW, Kohn MA. Heat exposure in an enclosed automobile. J La State Med Soc. 1995 Dec;147(12):545-6. PMID: 8543892.
- alguth, Posted by, and Kutukamus Says: "On the Heating of Parked Cars." *Doing Science To Stuff*, 18 July 2013,

blog.doingsciencetostuff.com/2013/07/18/on-the-heating-of-parked-cars/.

