
ECE 4050: Project 2 Report – Spring/Summer 2023

July 21, 2023

David Baron-Vega

Access ID: gf7068

OpenCV: Applications of Basic Image Processing

Table Of Contents:

I. Abstract

II. Introduction

III. Methods/Software

IV. Results, Discussion, Conclusion

V. Appendix of Code

I: Abstract:

This report outlines the development and implementation of a software console

application capable of manipulating and processing digital images using the OpenCV open-

source library. Written in C++ (NOTE: Version 17) using Visual Studio 2022 and using the

capabilities and predefined functions available within the OpenCV library, the software hosts a

user-friendly terminal UI that allows the user to navigate through a collection of images and

apply various image processing techniques. These techniques include increasing/decreasing

brightness, increasing/decreasing contrast, and the application of a median filter for noise

reduction. Testing of the program and its functionalities demonstrates that the software operates

effectively, smoothly transitioning between images and successfully applying multiple changes

to the images which can be used to enhance or modify the visual characteristics of the images.

The changes made by the user on any given image in the specified directory can be saved as a

separate file, saved under the file name and type specified by the user.

Image processing has tons of applications across a broad spectrum of fields, including but

not limited to: medical imaging (as is the topic of this project), remote sensing and object

detection, machine vision and robotics, photography, and even social media (I have read that

many of the algorithms used to identify what type of content a user engages with the most utilize

computer vision and OpenCV!) . Just as in all realms of engineering and scientific research, the

potential applications of image processing are limited only by the creativity and innovation of the

designer.

II: Introduction:

In this project, we were tasked with constructing a program capable of applying a few

fundamental image processing techniques on a collection of user-defined images. The aim of this

assignment was not only to understand and implement algorithms behind these techniques, but

also to gain hands-on experience with the OpenCV library, one of the most powerful and widely

used libraries in image processing and computer vision.

The requirement of creating a user-friendly interface was accomplished using basic

terminal-based UI prompts, which allows the user to navigate between images and apply desired

modifications. This emphasized the need for a solid understanding of object-oriented

programming and modularity, as functions of one class/file were called by functions of another

class and within a different file. Through this project, we practiced using the programming skills

taught in this course and some linear algebra concepts shown in class necessary to make image

processing take place.

III: Methods and Software:

The software created is structured around two major classes: `ImageManager` and

`UIManager`. The `ImageManager` class is responsible for performing all the processing of the

images, implementing the editing functions, and storing the current state of the modified image.

On the other hand, the `UIManager` class handles the interaction with the user through the

command-line interface, enabling image navigation and editing based on user input. These two

classes interact constructively, with methods from each being called upon in the other to

complete the task and respond appropriately to user input.

The main.cpp file serves simply as the entry point for the program, initializing an

instance of the start(); function from `UIManager`, from which all other necessary functions can

be called via user input. The architecture of the entire program is quite simple, and the heavy

lifting is really done by the predefined functions provided by the OpenCV library.

Below are detailed descriptions of all the functions declared and defined within the

`ImageManager` class:

Loading the data:

1. `loadImages`: This function populates the images vector with Mat objects representing each

image file from the provided filepaths. If an image cannot be loaded correctly, an error message

is displayed and the image is skipped.

 Moving through the ‘list’ of images:

2. `displayCurrentImage`, `nextImage`, `prevImage`: These functions allow navigation through

the loaded images. `displayCurrentImage` shows the currently indexed image, while `nextImage`

and `prevImage` increment or decrement the current image index, respectively, cycling through

the images (matricies!) in our Images vector.

3. `increaseBrightness`, `decreaseBrightness`: These functions adjust the brightness of an image

by adding or subtracting a constant value to each pixel. They are useful for correcting

underexposed or overexposed images. The value I selected to increment/decrement the value of

the brightness of each pixel was 25, or roughly 10% of the maximum of 225 brightness that a

grey-scale image/pixel can have.

4. `increaseContrast`, `decreaseContrast`: These functions adjust the contrast of an image by

scaling the pixel values. They are used to enhance or soften the distinction between different

elements of an image. The numerical arguments passed to this function represent percentages,

but to be completely honest I did not dive deeper into the theory of how this works. I played

around with the percentages until I achieved changes that were easily noticeable but not radical.

5. `applyMedianFilter`: This function applies a 3x3 (9-pixel definition) median filter to an image,

useful for reducing "salt-and-pepper" noise. It replaces each pixel's value with the median value

of the neighboring pixels. As explained in lecture, an odd-value matrix is ideal for this type of

filtering as it assures that the matrix has one singular center value that can be ‘averaged’ so to

speak, be the surrounding pixels.

6. `saveImage`: This function saves the modified image under a user-specified filename.

On the other hand, the `UIManager` class directs the user interface, controlling the

interaction between the user and the `ImageManager`. Through a series of user prompts, it

enables the user to select images, apply image edits, navigate between images, and save

modifications. The few methods defined within the UIManager class are self-explanatory so I

will not bore you by explaining these simple functions. These functions are simply responsible

for creating the starting point of the program and outputting the menu options to the user, thus

granting access to all the functions from the ImageManager class.

Memory Allocation and Its Importance:

Memory allocation is the process of reserving space in the computer's memory to store

data and instructions. This process allows applications to have a dedicated space for their

execution. It is the basis for storing variables, arrays, and objects.

In the program, memory allocation plays a significant role in managing the images. When

an image file is loaded into the software, memory is allocated to store the image's pixel data in a

format that the OpenCV library can understand (in this case, the cv::Mat object). The size of the

allocated memory depends on the image's dimensions and the color/depth. The reason memory

allocation is important is that it allows for efficient use of resources. By allocating only the

memory needed to store the image, the software avoids wasting memory space. In the program,

memory allocation and deallocation are taken care of by the OpenCV library when creating and

destroying cv::Mat objects. However, the principles of efficient memory use are still important

and something we as software designers should understand to create efficient programs that do

not slow down our machines or bloat over time.

IV: Results, Discussion, Conclusion:

The image processing software I have created showed its ability to perform basic image

processing techniques effectively on the provided grayscale MRI images. The software

manipulated brightness and contrast successfully and could apply a median filter, as per the

project requirements.

The software was tested using 28 grayscale MRI images, and regardless of the image

dimensions or specific patterns in the image, the software functioned as intended without any

issues. On adjusting the brightness, the software demonstrated that it could both brighten and

darken the images effectively. Similarly, the program was able to dim an overly bright image

without losing its essential structural details.

Provided Image, Brightened Image, Darkened Image:

The contrast adjustment feature of the software also produced the expected results. When

the contrast was increased, the grayscale intensities became more distinguishable, making the

images clearer. Conversely, reducing the contrast brought the grayscale intensities closer, which

made the images blurrier but still maintained their overall structure.

Provided Image, +Contrast Image, -Contrast Image:

The median filter, implemented as a 3x3 pixel-matrix as per the project requirement, was

effective in noise reduction. This feature was useful in smoothing out the salt-and-pepper noise

that can be often seen in MRI images.

Before and After Applying Median Filter:

The software's console-based user interface was simple but effective. The UIManager class

guided the user through each step of the process, from loading the image, applying

modifications, to finally saving the processed image. This allowed for an acceptable user

experience, enabling the user to iterate through images and apply different modifications without

having to restart the program.

The before and after images of the median filter in use show that, even after filtering, the images

may benefit from a modulation in brightness and contrast. The image below shows the same

image after it has been filtered, increased contrast, and decreased brightness.

Noisy Image after filter, +20% contrast, -10% brightness:

The software’s ability to stack multiple changes and save these changes demonstrates the

program’s full capabilities. In the image above, compared to the image which only applied

filtering, we can see different regions of the brain highlighted and contrasted with better

accuracy.

Other Image Processing Techniques Applicable to MRI Imaging:

 Object Detection and Machine Learning

OpenCV, apart from its image processing capabilities, also has a capable set of tools for

machine learning and object detection. This includes prebuilt functions for classification,

clustering, and regression. In medical imaging and MRI scans, object detection algorithms could

be used to identify and isolate specific regions of interest within the image. For example, these

algorithms could be trained to detect different anatomical structures like the brain, spine, or other

organs. with these OpenCV machine learning and object detection functionalities, we could

enhance our software's ability to analyze MRI scans, enabling it to detect organs or even

abnormalities, and learn from the features in the scans that can be used to train the machine

learning models.

To conclude: the software developed has effectively demonstrated the basic image processing

techniques. The application, while straightforward and simple, offers valuable insights into the

potential of digital image processing. It must be noted, though, that this is a fundamental

representation of the possibilities in the field of image processing. There are many more

advanced techniques that can be explored for a wider range of applications.

Thank you.

V: Appendix of Code:

Below are screen captures of all the code written and used for execution. The files and code

submitted are exactly equivalent to what is shown below.

Main.cpp File:

ImageManager.h File:

ImageManager.cpp file:

UIManager.h file:

UIManager.cpp file:

