
ECE 4050: Project 3 Report – Spring/Summer 2023

August 3rd, 2023

David Baron-Vega

Access ID: gf7068

Using Boost Library/Chrono to Measure Efficiency of Sorting Algorithms

Table Of Contents:

I. Abstract and General Introduction

II. Introduction to Boost/Chrono

III. Methods/Software

IV. Results, Discussion, Conclusion

I: Abstract and General Introduction:

As the demand for faster and more efficient processing of data grows ever greater, the

importance of sorting algorithms in computer science has never been greater. Sorting, at its core,

is the act of arranging items in a specific order - whether it be ascending, descending, or even

lexicographically. Sorting algorithms play a crucial role in streamlining and organizing data for

easy access and efficient processing. This is important because the performance of sorting

algorithms can significantly impact the functionality, usability, and efficiency of large-scale

software systems and even big personal projects.

This report focuses on three widely used sorting algorithms: QuickSort, MergeSort, and

HeapSort. These were chosen due to their unique characteristics, widespread usage, and because

they each represent different algorithm design concepts: divide and conquer for QuickSort and

MergeSort, and the heap data structure in the case of HeapSort.

QuickSort, known for its impressive average case performance, uses a pivot to partition the data,

and recursively applies this method to sort the partitions. MergeSort also employs a divide and

conquer strategy, but in a different manner: it divides the unsorted list into halves, sorts them

separately, and then merges them. On the other hand, HeapSort uses a binary heap data structure,

repeatedly removing the largest element from the heap until it is empty, thereby sorting the data.

However, as each algorithm is designed differently, their performance varies based on the nature

and size of the data set. This performance comparison of QuickSort, MergeSort, and HeapSort

will serve to highlight the differences in execution time, providing insights into their efficiency.

We will use a data set of 10,000 random integers for the comparison, applying each algorithm to

an identical copy of this set to ensure fairness. We will repeat this process 30 times (Central

Limit Theorem, I am looking at you), and observe the average time of execution for each

algorithm and look at their standard deviation values as well.

II:Introduction to Boost/Chrono Library:

Boost.Chrono is a particularly useful library within the Boost Libraries Project, which

provides functionality for measuring time in a precise and consistent way. The key component of

the Boost.Chrono library is the chrono::duration class, which represents a time span. This class is

designed to be flexible and to work with a variety of time units, from hours and minutes down to

microseconds and nanoseconds.

The chrono::duration class operates in conjunction with the chrono::time_point class. A

chrono::time_point represents a point in time. It is a wrapper around a chrono::duration that

counts the time since the established epoch (a fixed point in the past).

Together, chrono::duration and chrono::time_point offer a robust way to work with time. With

these tools, you can measure the time it takes to perform a specific task in any C++ program,

calculate the difference between two points in time, and also delay the execution of a program

for a specified period.

Some Notable features of Boost.Chrono:

• High resolution timers: Boost.Chrono provides the tools to measure time spans with

high precision, which is important when analyzing algorithms, since they may perform

tasks so quickly. For example, you can measure the time it takes to perform a sort

operation down to the nanosecond, although microseconds were used to measure the

results in this project.

• Type safety: Boost.Chrono uses distinct types for different units of time, such as hours,

minutes, seconds, milliseconds, and so on.

• Convenience: Boost.Chrono overloads the arithmetic operators for chrono::duration,

making it easy to perform operations like adding two durations together, or dividing a

duration by a number. (Yay, Polymorphism!)

For this project, Boost.Chrono was used to accurately measure and compare the time it took for

each sorting algorithm to sort the randomly generated data. By using the

chrono::high_resolution_clock feature, it was possible to get accurate time measurements for the

sorting algorithms, providing a precise comparison of their performance.

III: Methods and Software:

First, let us observe the asymptotic, worst-case efficiency of the three sorting algorithms

being analyzed. This is what we know to be the Big-O notation for algorithm efficiency that we

have come to learn about in this class:

QuickSort:

 An algorithm that on average, performs sorting operations in O(n log n) time complexity. The "n

log n" comes from the fact that the list of n elements is repeatedly partitioned (log n times) and

then each partition is processed (n times). However, in the worst-case scenario (when the

smallest or largest element is always chosen as the pivot), QuickSort can degrade to O(n²)

quickly, the larger and larger the dataset is.

MergeSort:

MergeSort also follows the divide and conquer concept, and it guarantees to sort an array of n

elements in O(n log n) time, regardless of the input arrangement. This makes it the most

consistent algorithm of the three along with the HeapSort algorithm, but not necessarily the best

for most applications.

HeapSort:

HeapSort involves building a Binary Heap of elements, which takes O(n) time. After that, it

removes the largest element from the heap and moves it to the sorted section of the array, then

‘heapifies’ the remaining elements. The heapify operation takes O(log n) time, and it is done n

times (once for each element). Therefore, HeapSort has a time complexity of O(n log n) in the

best, average, and worst cases.

Again, it is worth noting that these three algorithms, as well as the many other sorting algorithms

that exist, all have certain strengths and weaknesses that are observed under different data

implementations.

Using Chrono function in the main.cpp file to test performance:

The main.cpp file is the starting point for executing the experiment. In this file, we

instantiate the functionality of the three sorting algorithms and perform operations that drive the

testing and benchmarking of these algorithms.

Main.cpp File:

At the beginning, we initialize an instance of a pseudo-random number generator using

std::default_random_engine. This random generator is used to create a pool of random integers

that we will use to fill our vectors for sorting. The main.cpp file consists of a main function

where we declare vectors of integers (dataQuickSort, dataMergeSort, and dataHeapSort) and fill

them with randomly generated numbers. Each of these vectors will be used with a corresponding

sorting algorithm (QuickSort, MergeSort, and HeapSort, respectively).

Before we start the sorting process, we utilize the high-resolution clock from the boost::chrono

library to capture the time at which we start the sorting operation. Then, we call the appropriate

sorting function from our SortingAlgos class. Immediately after sorting is completed, we capture

the end time. By subtracting the start time from the end time, we can calculate the total time

taken to sort the vector. This measurement is our benchmark for each sorting algorithm. The

process is repeated for each of the three sorting algorithms, enabling us to compare their

performances directly. By repeating the process of running the solution 30 times, we can gather

sufficient time-execution data to hypothesize which algorithm(s) performs the best.

Side Note: I tried to create a comprehensive experiment that effectively created a Monte-Carlo

simulation of the described experiment. However, for the scope of this project and the time I had

to complete it, I did not do so.

IV:Results, Discussion, Conclusion:

Results:

Our experiment with the implemented sorting algorithms produced the following results:

• QuickSort demonstrated an average execution time of 4842.8333 microseconds with a

standard deviation of 25553.592 microseconds.

• MergeSort showed an average execution time of 23976.333 microseconds with a standard

deviation of 2546.658 microseconds.

• HeapSort exhibited an average execution time of 4976.6667 microseconds with a

standard deviation of 208.325 microseconds.

Output results of our program after a single execution:

Discussion:

The average execution times indicate that QuickSort and HeapSort generally performed

better than MergeSort in our experiment, with HeapSort showing the best performance.

However, the high standard deviation of QuickSort implies that its performance can vary widely

depending on the input data, which aligns with our understanding of the algorithm's worst-case

performance.

MergeSort, while slower on average, demonstrated more consistency in execution time, as

indicated by its lower standard deviation. This characteristic of MergeSort is advantageous in

contexts where predictability of execution time is important.

HeapSort was the most consistent of the three, demonstrating the best average performance and

the lowest standard deviation. It is important to note, however, that the specifics of the input data

and the machine and architecture on which the code is running could influence these results, and

different results will be observed in a different context or with different data.

V: Conclusion:

In conclusion, the results obtained show the trade-offs in choosing a sorting algorithm.

While QuickSort and HeapSort were faster on average in this experiment, QuickSort showed

higher variance, which might make it less suitable for certain applications. MergeSort was

slower but more consistent, which might be preferable in scenarios where stability is prioritized.

Ofcourse, none of this would have been possible without the incredible resource that is the

boost/chrono library! The implementation of this project relied significantly on the functionality

provided by the Boost.Chrono library. Its ability to measure and record time intervals allowed us

to evaluate and compare the performance of the three sorting algorithms extremely easily, with

less than 10 lines of additional code. As stated, and to emphasize, these time-monitoring and

time-keeping functionalities could apply to almost any line of code one could write in the C++

language. In the future, it would be interesting to test the performance of all sorts of different

algorithms (I/O, Networking, Visual Processing, and UI development algorithms., to name a

few!), and on these same sorting algorithms but with a larger, more diverse body of data to better

understand their performance characteristics!

To whomever may read this: I hope this helps you get started with the Boost Libraries and

encourage further curiosity about program and algorithm design and efficiency, and the C++

community and it all it has to offer!

Thank you.

😊

