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I: Introduction: 
 

 The purpose of ECE 4331 Experiment 5 was to study and get acquainted with the chaotic 

behavior and dynamics of the diffusion-less Lorenz system. The objectives of this experiment 

were to realize the diffusion-less Lorenz system using analog circuit components and analyze the 

experimental behavior of the system using the available laboratory equipment and the 

understanding of such systems provided to us in ECE 4330 lectures. 

 

In this experiment, our exploration into linear systems and electronic circuit analysis advanced 

into the realm of dynamic, non-linear systems. The diffusion-less Lorenz system, a simplified 

variant of the classical Lorenz system, is known for its chaotic behavior, making it a fascinating 

subject for study in electrical and computer engineering. By employing a range of electronic 

components and leveraging the principles of linear systems we have studied thus far, we aimed 

to recreate the system's characteristic dynamics experimentally. 

 

The implementation involved careful consideration of component selection and circuit topology 

to ensure that the circuit accurately represented the theoretical model provided to us. This hands-

on approach provided valuable insights into the practical challenges of circuit design and 

realization when designing a larger model than we had accomplished in previous experiments. 

 

This report details the procedures followed in the experiment, the setup and configuration of the 

circuit, and the analysis of the results obtained. We will discuss how the circuit's behavior 

correlated with the theoretical predictions of the diffusion-less Lorenz system and examine any 

discrepancies between theoretical expectations and experimental observations. All experimental 

values and results obtained will be compared to their theoretical values by calculation of their 

relative error, whenever possible.  

II: Procedure: 
II.a: Components Used: 
 
In the completion of experiment 5, the following components and laboratory tools were used: 

• RIGOL DG1022 Waveform Generator  

• RIGOL MSO1104Z Oscilloscope  

• RIGOL DM3058 digital multimeter  

• OPA277 precision operational amplifier (5) 

• AD633 analog multiplier (2) 

• 10kΩ (1/4 Watt, 1%) resistor (2) 

• 100 kΩ (1/4 Watt, 1%) resistor (1) 

• 1MΩ (1/4 Watt, 1%) resistor (3) 

• 10MΩ (1/4 Watt, 1%) resistor (3) 

• 5.1kΩ (1/4 Watt, 5%) resistor (1) 

• 10kΩ (1/4 Watt, 5%) resistor (1) 

• 50kΩ, 10-turn precision potentiometer 
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• 100pF (Polypropylene film, 1%) capacitor (3) 

• 0.01𝜇F (Polypropylene film, 5%) capacitor (3) 

• 0.1𝜇F (Polypropylene film, 5%) capacitor (3) 

 

II.b: Pre-Laboratory Procedure: 
 

Figure 1: Diffusionless Lorenz Model 

 
 

The following steps described in this subsection were completed in the fulfillment of the pre-

laboratory activity for experiment 5: 

 

 

a) Using Simulink, create a block diagram that realizes the diffusion-less Lorentz system 

and verify its behavior. 

 

b) Using the created block, Set 𝑎 = 1, integrators initial conditions to (𝑥(0), 𝑦(0), 𝑧(0)) = 

(1,1,1) and set the simulation time to 400 sec. Generate a plot of 𝑥(𝑡) and 𝑧(𝑡) versus 

time. Also, generate phase-plane trajectories for 𝑧(𝑡) vs 𝑥(𝑡), 𝑦(𝑡) vs 𝑥(𝑡) and 𝑧(𝑡) vs 𝑦(𝑡). 
NOTE: Make sure the Model Settings in Simulink are set correctly and as shown in the 

prelab. 

 

c) Repeat the simulations with 𝑎 = 1.88 and 𝑎 = 2.5 after setting integrator initial conditions 

to (1,0,0) and setting the simulation time to 500. Generate 𝑧(𝑡) vs 𝑥(𝑡) plots for each case. 

 

d) Employ Simulink to demonstrate the chaotic behavior of the system for 𝑎 = 1. You can do 

that by simulating two systems that are identical except that one starts from the initial 

state (1,1,1) and the other starts from (1.001,1,1). Generate a plot of 𝑥1(𝑡) and 𝑥2(𝑡), set 

simulation time to 50 seconds. 

 
 

II.c: Laboratory Activity Procedure: 
 

The following steps described in this subsection were completed during the laboratory 

activity session for experiment 5: 
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a) Use the breadboard to build the following circuit (shown below). For the first few steps 

of the lab activity, use three 100pF, 1% tolerance Polypropylene capacitors. 

 

 
b) Connect the output signal 𝑥(𝑡) to CH1 of the scope. Connect the output signal 𝑧(𝑡) to 

CH2 of the scope. Set both channels to 1.5V/div. Set the time scale to 5ms/div. Set the 

scope to the X-Y (full display) plotting mode. Power up the circuit. The noise in the 

circuit will be exploited to trigger the dynamics of the system being simulated (this 

provides the initial conditions!). 

 

c) Use a voltmeter to monitor the voltage that sets the parameter 𝑎. This is the output of the 

inverting amplifier with the precision potentiometer. Adjust the potentiometer so that the 

voltmeter reads 1 Volt (i.e., a=1). Save three captures of the scope’s traces. 

 

d) Switch the circuit power off. Replace the integrator capacitors to the 0.01𝜇F (5%) 

Polypropylene film capacitors. Power up your circuit. What effect does using the larger 

capacitors have on the solution? Provide an explanation for these effects. Save three 

captures of the scope’s traces. 

 

e) Repeat the previous step using 0.1𝜇F (5%) Polypropylene film capacitors. 

 

f) Reinstall the 100pF integrator capacitors. Adjust the potentiometer so that you set 𝑎 close 

to 1.85. Fine tune the potentiometer until a stable periodic orbit (Similar to the one 

generated in the pre-lab simulations) is generated. Record the value of 𝑎. Save the scope’s 

trace image of the output signal. 

 

g) Switch the power off, then switch it back on. Does the circuit converge to the same limit-

cycle? Does the trajectory agree with the Pre-lab Simulink simulations? Explain. 

 

h) Repeat Steps f and g for 𝑎 = 2.5. Fine tune the potentiometer until a stable periodic orbit 

is generated once again. Save the scope’s trace image. 
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i) With 𝑎 tuned as in Step H, generate and save the phase plane traces for 𝑦(𝑡) vs 𝑥(t). 

Repeat for 𝑧(t) vs 𝑦(t). Additionally, Obtain and save the plots for 𝑧(𝑡) vs 𝑥(𝑡) and 𝑦(𝑡) vs 

𝑥(𝑡) with 𝑎 ≅ 5.2. Finally, try to obtain the plot 𝑧(𝑡) vs 𝑥(𝑡) for the oscillations (that are 

difficult to get) in the vicinity of 𝑎 ≅ 0.4 and 𝑎 ≅ 0.55. By studying the bifurcation 

diagram provided, it can be observed that these values of a should yield phase-plane 

trajectories that are periodically stable. 

 

III: Results: 
 

The following sections describe and analyze in detail the theoretical and experimental 

results obtained during the completion of the pre-laboratory and the laboratory activity. Many of 

the circuit elements’ theoretical vs. experimental values, and their relative error, are tabulated in 

these sections. Also, certain key findings and values may be highlighted and boxed. 

 

III.a: Pre-Laboratory Results: 
 

The following section provides the results of the pre-laboratory tasks. By utilizing 

MATLAB’s Simulink software, simulations of the behavior output signals of the Lorenz 

diffusion-less system were successfully completed. The results and preliminary analysis of the 

system are provided below. 

 
Step A: Simulink Block Diagram 

 
Figure 2: Simulink Block Diagram of Lorenz System 

 
 

Figure 2 (above) shows the block-diagram realization of the diffusion-less Lorenz mathematical 

system. In the case of figure 2, the XY graph outputs the phase-plane trajectory of x(t) vs z(t). 

This same model, with slight adjustments to the output nodes, was used to depict the phase-plane 

trajectories of x(t) vs. y(t) and y(t) vs. z(t) as well. 
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Step B: Block Diagram Output 

 

In step B, the simulation model created in step A was verified by generating the three 

characteristic phase-plane trajectories of the Lorenz system, as well as the graph that shows x(t) 

vs. z(t), both with respect to time. In all four of the graphical figures provided below, the chaotic, 

unpredictable behavior of the model is self-evident and shown in the butterfly-like shapes that 

are characteristic of this famous 3-dimensional Lorenz system. Figure 3 shows the model settings 

used in Simulink to generate all the proceeding simulations, for reference. Additionally, it is 

worth noting that MATLAB version R2021b was used in the development of these simulations. 

 

 
Figure 3: Model Settings Used 

 
 

 

 
Figure 4: Signal Graph of x(t) (yellow) & z(t) (blue) vs. Time 
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Figure 4 above shows the time-dependent signals of x(t) and z(t) of the Lorenz System, 

simulated for at least 400 seconds. The initial conditions of (x,y,z) = (1,1,1) were set by selecting 

each of the three integrators corresponding to each of the 3 outputs/variables and assigning their 

initial condition to 1. Additionally, the constant ‘a’ was set to 1 in this instance. The non-

periodic, chaotic behavior of the system at this value of ‘a’ and at these initial conditions in 

evident by the above graph. Neither signal ever matches the other, and each signal never repeats. 

 

Phase-Plane Trajectories, A = 1, I.C.’s (x,y,z) = (1,1,1): 

 
Figure 5: x(t) vs. z(t) 

 
Figure 6: y(t) vs. z(t) 
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Figure 7: z(t) vs. y(t) 

 
 

 

Step C: Observing Convergence for Certain Values of A: 

 

When certain values of constant ‘a’ are applied to the system, at specific initial conditions, the 

output of the phase-plane trajectories may reach periodic stability (very interesting!). The 

breakdown of values for x’s initial conditions for varying values of a at which the Lorenz system 

may exhibit stability is thoroughly summarized in the bifurcation diagram provided below: 

 

 
 

The points at which there are densely shaded spaces in the diagram below are points at which 

this periodic stability may be observed. Again, it is worth emphasizing that these results are very 

sensitive to the initial conditions within the system. The two figures below show a simulation of 
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the Lorenz system reaching periodic stability at certain values for constant a, with initial 

conditions of (1,0,0). 
Figure 8: A = 1.88, z(t) vs. x(t) 

 
 

 

As shown in the figure above, when the constant A was set to 1.88, the system approaches some 

stability. Although there is still noticeable chaotic behavior, the density of curvature in a 

particular region matches the shape shown in the bifurcation diagram.  

 

 
Figure 9: A = 2.5, z(t) vs. x(t) 

 
 

In Figure 9, the phase-plane trajectory of the system with the constant A value set to 2.5 is 

shown. There is very clear convergence of the system at this value, which matches very clearly 

the results of the provided bifurcation diagram. 

 



ECE 4431: Experiment 5 
 

11 

These simulated values for varying values of A which yield convergence within the system will 

be used to compare the experimental results obtained during the laboratory activity that also 

yielded convergence and stability. 

 

 

Step D: Observing Large Difference in Output Signals with Slight Change in Initial Conditions: 

 

A phenomenon characteristic to chaotic systems such as the Lorenz model is that a very small 

change in the system’s initial conditions will yield vastly different outcomes the more time 

passes. This is essentially the definition of a chaotic system: unlike linear differential systems 

with analytical or numerical solutions, whose answers can be used to predict future outcomes 

when initial conditions are known, it is impossible to predict the long-term behavior of a chaotic 

system, even when initial conditions are known. 

This ‘butterfly effect’ was demonstrated using a pair of identical block diagrams, same as the 

diagrams used in steps a, b, and c. One system was given initial conditions of (1,1,1), while the 

second system was provided with initial conditions of (1.001,1,1). The output signal x(t) of both 

systems were plotted together in respect to time. What we observe in Figure 11 is that, initially, 

the output signals of both models are similar, but as more time passes, the two signals take very 

different, unpredictable paths. 

 
Figure 10: Pair of Lorenz Systems with Different Initial Conditions 
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Figure 11: x1(t) & x2(t) vs. time 

 
 

As can be seen in figure 11, it took only approximately 30 seconds for the two identical systems, 

with nearly identical initial conditions, to diverge from each other. 

Fascinating! 

 

III:b Laboratory Activity Results: 
 

This section provides the results obtained during the completion of the laboratory 

activity, in person.  

Table 1 and 2 below provide the experimental vs. theoretical values, and the relative error, of all 

the circuit components used in the completion of each of the proceeding steps. Table 1 tabulates 

this for all the different capacitors used, and Table 2 tabulates this for all resistive elements used. 

 

 

 
Table 1:  Percent Error of All Capacitors Used 

Component Name Theoretical Value Experimental Value Percent Error 

C 1.a 100pF 95pF -5.0% 

C 2.a 100pF 96pF -4.0% 

C 3.a 100pF 96pF -4.0% 

C 1.d 0.01𝜇F 9,797pF -2.210% 

C 2.d 0.01𝜇F 9,605pF -3.950% 

C 3.d 0.01𝜇F 9,772pF -2.280% 

C 1.d 0.1𝜇F 97,777pF -2.233% 

C 2.d 0.1𝜇F 98,437pF -1.563% 

C 3.d 0.1𝜇F 98,045pF -1.955% 
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Table 2: Percent Error of All Resistors Used 

Component Name Theoretical Value Experimental Value Percent Error 

R1.1 10M 10.163M 1.163% 

R1.2 10M 10.075M 0.75% 

R1.3 10M 10.002M 0.020% 

R2.1 1M 1.0067M 0.670% 

R2.2 1M 1.076M 7.60% 

R2.3 1M 0.995M -0.50% 

R3 100K 100.21K 0.210% 

R4.1 10K 9.984K -0.160% 

R4.2 10K 9.936K -0.640% 

R4.3 10K 9.905K -0.950% 

R5 5.1K 5.077K -0.451% 

 

 

 

 

 

Step A: Realizing Physical Circuit, Comparing Theoretical vs. Experimental Values of 

Components 

 

The physical circuit designed during the laboratory session, which models the diffusion-less 

Lorenz system, is shown in Figure 12 below. Figure 12 shows the circuit with the 100pF 

capacitors at the integrators being used. The only changes made to the circuit shown throughout 

the completion of all the following steps was the swapping of the integrator’s capacitors. These 

images were not included for redundancy, but it will be indicated for which steps these changes 

were made. 
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Figure 12: Physical Realization of Lorenz System 

 
 

Steps B and C: x(t) vs. z(t) for A = 1.0V 

 
Figure 13: Constant A set to 1.0V 

 
 

Figure 13 shows the realized Lorenz circuit with a multimeter measuring the voltage output of 

the inverting amplifier used in the system, which is the constant A in the system. The precision 
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potentiometer was used as the feedback resistor in the inverting amplifier; by modulating the 

resistance in the potentiometer, the amplification factor across the inverting amplifier could be 

increased or decreased, allowing us to change and set the value of constant A with accuracy. 

Figure 13 shows the value of constant A measured to be approximately 1.0V. 

 
Figure 14: x(t), z(t) vs. time 

 

In Figure 15 above, we see the outputs x(t) (in yellow) and z(t) (in blue) of the Lorenz circuit, 

with constant A set to 1.0V. These experimental results demonstrate the aperiodic outputs of the 

system, which match the behavior of the simulated results. 

 

The following three figures below show 3 separate screen-captures of the oscilloscope in X-Y 

mode, plotting x(t) vs. z(t) of the Lorenz circuit. These figures represent the phase-plane 

trajectories of the system, which are like the simulated results obtained. As can be seen, the 

system displays chaotic behavior for constant A = 1.0V. Although we do not manually select 

initial conditions for the circuit realization of the system, the internal noise of the electrical 

components provide the initial voltage necessary for kick the system into oscillatory behavior. 
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Figure 15: Phase Plane-Trajectory of x(t) vs. z(t) pt.1 

 
 

Figure 16: Phase Plane-Trajectory of x(t) vs. z(t) pt.2 
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Figure 17: Phase Plane-Trajectory of x(t) vs. z(t) pt.3 

 
 

Step D: x(t) vs. z(t), A = 1.0V, Using 0.01F Capacitors: 

 

Figures 18 and 19 below show the phase-plane trajectories of x(t) vs. y(t) of the Lorenz circuit, 

after having swapped the 100pF capacitors with 0.01F Capacitors in the three integrating op-

amps. As we have learned, the time constant of an integrator circuit is given by τ=RC, where R is 

the resistance and C is the capacitance of the op-amp. By increasing the capacitance, we 

increased the time constant value. This means the integrators, and therefore the entire circuit and 

its outputs responded slower to changes in the input signal.  

Although the two figures below seem to indicate stability or convergence in the system, this was 

not the case. Because the system’s resonant frequency was much lower than when it had the 

100pF capacitors, the oscilloscope’s trace was much slower and was less able to demonstrate the 

chaotic, aperiodic behavior of the output signals. Additionally, by increasing the capacitance 

across the integrators, the amplitude of the output signals, and therefore the phase-plane 

trajectory, was decreased. This can be understood by acknowledging the transfer function of an 

integrator circuit: H(s)= Vout/Vin = -1/RC. By increasing ‘C’, we decrease the amplitude of the 

output signal. As can be seen by the time-dependent graphs, at the top of figures 18 and 19, we 

can observe the decrease in amplitude of the signals x(t) and z(t). 
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Figure 18: Phase Plane-Trajectory of x(t) vs. z(t), 0.01F Capacitors pt.1 

 
 

Figure 19: Phase Plane-Trajectory of x(t) vs. z(t), 0.01F Capacitors pt.2 

 
 

 

 

Step E: x(t) vs. z(t), A = 1.0V, Using 0.1F Capacitors: 

 

In step E, we once again increased the capacitance value of the integrating circuits in the Lorenz 

circuit. Figure 20 shows the resulting output of x(t) vs. z(t) and its phase-plane trajectory with 

these changes to the circuit. Once again, by increasing the capacitance in the integrating circuits, 
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we decrease the resonant frequencies of the signal, and decrease the output amplitudes of x(t) 

and z(t). Unfortunately, after many attempts to tune the oscilloscope to these changes, we were 

unsuccessful in acquiring any clear or tangible output signal. The phase-plane needle was seen 

moving across the graph, but it did not move fast enough to witness any graph. The amplitudes 

of x(t) and z(t) seem to also have been completed minimized, into meaningless noise. 

 
Figure 20: Phase Plane-Trajectory of x(t) vs. z(t), 0.1F Capacitors 

 
 

Step F: x(t) vs. z(t), A = 1.85V, Using 100pF Capacitors: 

 

In step F, we once again use the 100pF capacitors across the integrating op-amps. By tuning the 

potentiometer, we changed the constant value of A until we witnessed the phase-plane trajectory 

of x(t) vs. z(t) approach stability. As shown in figure 21, the value of A that provided stability to 

the circuit was 1.852V. The resulting convergence in the phase-plane trajectory is shown in 

figure 22. 

These results parallel the results obtained in the pre-lab simulations, and correlate to the values 

of convergence shown in the bifurcation diagram provided to us.  
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Figure 21: Reaching Stability by Setting A=1.85V 

 
 

Figure 22: Phase Plane-Trajectory of x(t) vs. z(t), A = 1.85V 

 

 

Step G: Resetting Initial Conditions of Circuit 
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In step G, we were asked to turn the system off, and turn it on again and observe the 

consequences this had on the circuit. By doing this, we are effectively randomizing the initial 

conditions of the circuit. The consequence of this was that, when turning the circuit back on and 

having the same value of constant A set as in step G, the phase-plane trajectory of the output 

signals no longer demonstrated convergence. The potentiometer had to be fine-tuned to a slightly 

different value for the circuit to demonstrate the same stable trajectory after each time the circuit 

was tuned off and turned on again. 

 

Step H: Stability at A = 2.5 

 

Figure 23 shows constant A set to approximately 2.5V. Experimentally, when setting A to 2.487V, 

the Lorenz circuit reached another point of convergence, shown in Figure 24. This once again 

matches the results we obtained in the simulations performed in the prelab activity. 

When turning the circuit off and on again, as previously stated, the constant A had to be re-tuned 

to a slightly different value.  

 
Figure 23: Setting A to approx. 2.5V 
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Figure 24: Phase Plane-Trajectory of x(t) vs. z(t), A = 2.5V 

 
 

Step I: Stability at A = 2.5, y(t) vs x(t) and z(t) vs. y(t) 

 

Figures 25 and 26 show the experimental results of the phase plane trajectories for output signals 

y(t) vs. x(t) and z(t) vs. y(t) of the Lorenz circuit, at constant A set to approximately 2.5V. 

The convergence of the system is evident once again here, as it should be. Nothing was changed 

in the circuit, only the signals across different points in the circuit were plotted using the 

oscilloscope. 

 
Figure 25: y(t) vs. x(t), A = 2.5V 
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Figure 26:z(t) vs. y(t), A = 2.5V 

 
 

Step I: Finding Stability for Various Values of A: 

 

Figures 27 and 28 show the convergence of the Lorenz circuit for when constant A was set to 

approximately 5.2V. The experimental stability of the system at this constant value once again 

agrees with the values of convergence shown the in bifurcation table provided. 

 
Figure 27: y(t) vs. x(t), A = 5.2V 
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Figure 28: z(t) vs. y(t), A = 5.2V 

 
 

 

Figures 29 and 30 show the phase plane trajectories of y(t) vs. x(t) and z(t) vs. y(t), respectively, 

when constant A was set to approximately 0.550V. Unfortunately, the stability of the trajectories 

is not evident in the images; the convergence of the output signals was very brief at this value of 

A, and even simply nudging the circuit board caused large disturbances in the output. I 

hypothesize that, at such small values of A, the impulse that A causes in the system was not large 

enough to overcome the noise of the experimental circuit. 

 
Figure 29: y(t) vs. x(t), A = 0.550V 
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Figure 30: z(t) vs. y(t), A = 0.550V 

 

IV: Conclusion 
 

To conclude, ECE 4331 Experiment 5 provided us with an invaluable opportunity to 

delve into the intriguing world of chaotic systems, particularly through the lens of the Lorenz 

Diffusion-less Chaotic System. This experiment extended our understanding of analog circuits 

and showcased the profound impact that even minor component variations can have on a 

system's behavior. 

 

Throughout the lab, we meticulously constructed and analyzed the analog circuit realization of 

the Lorenz system. By incorporating operational amplifiers, resistors, capacitors, and multipliers, 

we successfully replicated a system that exhibits chaotic behavior. One of the most insightful 

aspects of this lab was observing the effects of altering the integrator capacitors. By replacing 

them with larger values, we could directly witness the sensitivity of the Lorenz system to 

changes in circuit parameters.  

Witnessing the transition from mathematical equations and simulations to an actual, functioning 

chaotic system was a testament to the power of analog electronics in modeling complex natural 

phenomena. 

 

In summary, Experiment 5 was an rewarding journey into the realm of chaos theory and its 

practical implementation using analog electronics. It reinforced our comprehension of creating 

complex systems through synthesizing mathematical models via circuit design. The successful 

completion of this experiment and the insights gained from it are valuable additions to our 

repertoire as electrical engineering students. 

 

Thank you! 
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