ECE 4700
Final Computer Project
David Baron-Vega — GF7068

PART 1:
White Gaussian Noise with PN =15 mW
0.6 T T T T T T T T T
0.4
o 0.2
©
2
ol 0
E -0.2 N
0.4 ’
'0.6 | | | | | | 1 | 1
0 1 2 3 4 5 6 7 8 9 10
Sample Number «10%4
White Gaussian Noise with PN =50 mW
1 .5 T T T T T T T T T

Amplitude

Sample Number «10%

>> ECE4700_FinalProjectTesting
Actual power of first noise signal: 0.014906 W
Actual power of second noise signal: 0.05018 W

The actual power values will vary each time the code is ran, since it is a random process.
However, the more samples used for the plotting will decrease the standard deviation of the each

value, yielding approximate values closer to the expected.
100,000 samples were used in the results shown above, which was also beneficial for more

accurate results in proceeding steps.

Code used for Part 1:

| Editor - /Users/david/Desktop/ECE 4»700/ECE4700_C0mputerProject_Final.m
ECE4700_ComputerProject_Final.m

1

2 1 %ECE 4700 - Computer Project - David Baron-Vega

3 ' %Access ID: GF7068

4

5 %Part 1: Generating White Gaussian Noise at specified power levels.
6

7 % Noise power levels in mW

g P_N1 = 15e-3; % 15 mW

g P_N2 = 50e-3; % 50 mW

10

11 1 %Number of samples Needs to be tuned to get an accurate and precise

12 | %result for power.

13 N = 100000; %can be tuned for more/less accurate and noisy signals.

14 %If N is bigger, standard deviation of output noise becomes much smaller

17 %Generating the WGN samples

13 nl = sqrt(P_N1) * randn(N, 1);
1g N2 = sqrt(P_N2) x randn(N, 1);
20

b1 %Ploting the WGN noise samples
bo figure;

b3 subplot(2,1,1);

D4 plot(nl);

bs title('White Gaussian Noise with P_N = 15 mW');
b Xxlabel('Sample Number');

b7 ylabel('Amplitude');

bg subplot(2,1,2);

30 plot(nZ) H

31 title('White Gaussian Noise with P_N
32 xlabel('Sample Number');

33 Yylabel('Amplitude');

50 mW');

36 %Computing the actual average power of the two noise signals
37 actual_power_nl = mean(nl.”2);
3g actual_power_n2 = mean(n2.72);

39

49 %Displaying the computed power values

41 disp(['Actual average power of first noise signal: ', num2str(actual_power_nl), ' Watts'l);
4o disp(['Actual average power of second noise signal: ', num2str(actual_power_n2), ' Watts']);
43

It was important to calculate the actual power as I did above. Because WGN is a random, ergodic
process, it’s ensemble mean is equal to its overall time average. Because we are generating
random noise at a mu value of 0, the noise power is equal to the variance of the noise signal. This
is why we square nl and n2 above.

Part 2 Results:

Generating time-domain FM-modulated signal and frequency domain of signal using fft:

Time Domain FM Signal

o
()]

Amplitude
o

S
(9]
T

ST AL A 1

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
Time (s)

Frequency Domain FM Signal

107! '

102

Magnitude
S
w

o
A
T

1 | 1
-15 -1 -0.5 0 0.5 1
Frequency (Hz) «10%

10
15

Code used:

52 %%% PART 2: FM Modulation:

54 %Setting the signal's parameters

55 Ac = 1; %Carrier amplitude

s kf = 200; %Frequency sensitivity (Hz/Volt)

57 fs = 21000; %Sampling frequency = 21KHz, much greater than fs > 2%B requirement.
g fc = 1068; % 1000+ (my last 3 digits) are 068

g t = -0.02:1/fs:0.02; %Time vector
79 ts = 1/fs; %Sampling interval

72 %Defining the band-limited message signal

73 Mt = (2%sin(2%pix20%t).”2)./((20%pixt)."2);

74 mt(t == 0) = 1; %Correcting the sinc function at t =0
75 figure;

7 plot(mt)

77 title('Message Signal m(t)');

7g xlabel('Time (s)');

79 ylabel('Amplitude');

31 %Integral of m(t) for FM
> integral_mt = cumsum(mt)sxts;

g4 %Creating the FM signal s(t)
g5 st = Ackcos(2kpikxfcxt + 2kpixkfkintegral_mt)

g7 S%Time domain results

53 figure;

o9 subplot(2,1,1);

bp plot(t, st);

b1 title('Time Domain FM Signal');
ho xlabel('Time (s)');

o3 ylabel('Amplitude');

o5 % Frequency domain representation

b Lfft = 2%(nextpow2(length(t)) + 1); %Increasing the FFT resolution for more detail

o7 S_fre = fft(st, Lfft);

bg S_fre = fftshift(S_fre)/Lfft; %Scaling the FFT output

gg freq = (-Lfft/2:Lfft/2-1)/(Lfftkts); %Correcting frequency vector calculation, middle of graph is .

p1 %Frequency domain results

o subplot(2,1,2);

93 plot(freq, abs(S_fre));

pg title('Frequency Domain FM Signal');
ps xlabel('Frequency (Hz)');

he ylabel('Magnitude');

pg %Setting the y-axis to use a logarithmic scale to better visualize the FFT output
hpg set(gca, 'YScale', 'log');

Comments:

Using the assigned value of kf, amplitude of 1, and an fc that is unique to my access id.

A large fs and very small ts was helpful in producing clear results. It was also important to set the
origin of the message signal to a non-zero value to produce the frequency-domain representation
accurately.

PART 3:

Signal with noise, filtered and differentiated r(t), detected md(t):

(r(t)) with Noise

-

| | T
| | i
E] I
1 l 1 il I | [| | I l
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
Time (s)
) x10% Filtered Differentiated Signal
| R A
£ i
£ | |
-%.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
Time (s)
, <10% | | Deteclted Messalge Signal (Im A2, ‘% E @ (I-D\ Q {m\
® N
= — T
alr — T
o
-(()).0;- -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
Time (s)

Comparing the original and detected:
The Amplitude of the detected is much, much, bigger! But the shape is fairly well retrieved.

Side by side comparison:

Ofcourse, the frequency of the retrieved signal is going to be higher. When this signal is
differentiated, even after filtering performed before and after differentiated, the FM will come
through as amplitude variations, so I believe this is what we would expect to see. If we needed
the retrieved signal to be of lower amplitude, we would have to apply more filtering/limiting.

B Comparison of Original and Detected Message Signals

Original Message m(t)
\ . |— — Detected Message md(t)

16000 | _
14000 | Y, N 1
12000 | / . .

10000 -) N

Amplitude

8000 | b, -
6000 | .
4000 -

2000 |-

0 >~ wi | I L L I L I
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
Time (s)

Message Signal m(t)
\ T

N

N\

Amplitude
£ -
\\
/
|

0 1 1 1 1
0 100 200 300 400 500 600 700 800 900
Time (s)

Code:

%%% PART 3: Noise in FM Channel and FM Demodulation

%Number of samples for noise should match the FM signal samples

N = length(t);

noise_power = 50e-3; %50 mW

n_t = sqrt(noise_power/fs) % randn(1,N); %Regenerating Noise signal:

%Creating the signal r(t):
rt=st+n_t

%Time domain plot of r(t)
figure;

subplot(3,1,1);

plot(t, r_t);

title('(r(t)) with Noise ');
xlabel('Time (s)');
ylabel('Amplitude");

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

n"

%Applying a limiter (optional)

%r_t = limiter_function(r_t);

%Applying a bandpass filter before differentiation
nyquist_freq = fs / 2;

%Lower and upper bounds for the bandpass filter must be strictly between @ and 1!

%We can set a small value close to zero for the lower bound

lower_bound_normalized (10/fs); %A small value close to zero but not zero
upper_bound_normalized (4000/nyquist_freq); %Upper bound normalized and less than 1

bpf_before_diff = fir1(80, [lower_bound_normalized upper_bound_normalized]);
r_t_filtered = filter(bpf_before_diff, 1, r_t);

%sDifferentiate the signal, Check the orientation of the signal vector to
%add the necessary dimension,

%Kept bugging out here, idk why I need an extra zero in the array for this
%to differentiate tbh, one dimension was getting lost when differentiating
%I think.

diff_r_t = [diff(r_t_filtered), 0]; %Concatinate zero in the correct orientation

if isrow(r_t)
diff_r_t = [diff(r_t_filtered), 0]
else
diff_r_t = [diff(r_t_filtered); 0];
end
diff_r_t = diff_r_t / ts; %Scale by the sampling interval

%Applying another bandpass filter after differentiation
%Lower and upper bounds for the BPF between 0-1

(10/fs);
(4000/nyquist_freq);

lower_bound_normalized
upper_bound_normalized

bpf_after_diff = firl(80, [lower_bound_normalized upper_bound_normalized]);
filtered_diff_r_t = filter(bpf_after_diff, 1, diff_r_t);

%Envelope detection to retrieve m_d(t)
md_t = abs(hilbert(filtered_diff_r_t));

a9

94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14

%Time domain plot of the filtered differentiated signal
subplot(3,1,2);

plot(t, filtered_diff_r_t);

title('Filtered Differentiated Signal');

xlabel('Time (s)');

ylabel('Amplitude');

%Time domain plot of the detected message signal m_d(t)
subplot(3,1,3);

plot(t, md_t);

title('Detected Message Signal (m_d(t))');

xlabel('Time (s)');

ylabel('Amplitude');

%Comparing m_d(t) with the original message signal m(t)
figure;

plot(t, mt, 'b', t, md_t, 'r—");

legend('Original Message m(t)', 'Detected Message m_d(t)"');
title('Comparison of Original and Detected Message Signals');
xlabel('Time (s)');

ylabel('Amplitude");

I had to trial and error this part quite a bit with the filters, until my retrieved message resembled
my original message better. Still, I couldn’t lower the amplitude of the retrieved message enough
as [would have liked. After differentiation, the vector used to plot the retrieved signal did not
match the original length of the message, so I had to manually add values to the array in order to
filter and then compute the retrieved message.

Part 4:
Comparing the original recovered message with new recovered messages with varying Kf
values:

® 0 Figure 5
File Edit View Insert Tools Desktop Window Help N

Ocdde @ 0B K [E

Comparison of Original and Detected Message Signals

18000

Original Message m(t)
N [_. |— — Detected Message md(t)
16000 |- ~ 7, E

14000 | / . g
12000 | . R
7/

= / . -
10000 / \

Amplitude

6000 -

4000 - ‘ 1

2000 |- | 1

) |
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
Time (s)

The comparison previously displays the comparison better, as the amplitude of the retrieved
signal is much larger. The have the most similar shape when Kf is approximately 250. Anything
beyond 400-500 for a Kf value already shows signs of overmodulation/sampling.

Code used:

i# Editor - /Users/david/Desktop/ECE 4700/ECE4700_ComputerProject_F

J ECE4700_ComputerProject_Final.m ::-::I +1
ig % Part 4: Optimizing md(t) by modifiying kf:

18 %Setting kf values and initializing MSE storage

19 kf_values = [10, 200, 9000]; SExample values including one for over-modulation
2p mse_values = zeros(size(kf_values));

21 optimal_mse = inf;

22 optimal_kf = 0;

24 %Defining filters outside the loop:

26 nhyquist_freq = fs / 2;

>7 lower_bound_normalized = (10/fs);

2g upper_bound_normalized = (3600/nyquist_freq);

29 bpf_before_diff = fir1(100, [lower_bound_normalized upper_bound_normalized]);

31 %Loop over each kf value
32 ¢+ for i = 1:1length(kf_values)

33 kf = kf_values(i); %Current value of kf

34

35 %FM Modulation with new kf value

36 integral_mt = cumsum(mt) * ts; %Recalculating integral with new kf
37 st = Ac * cos(2kpixfckxt + 2xpixkfkintegral_mt); %new FM signal

38

39 %Generating noise of same power 50mW and to match the FM signal samples
40 n_t = sqrt(noise_power/fs) * randn(1, length(t));

41

42 %Creating the noisy received signal r(t)

43 r_t = st + n_t;

44 . . 4 L

45 %Applying the bandpass filter before differentiation

46 r_t_filtered = filter(bpf_before_diff, 1, r_t);

47

48 %sDifferentiating the signal

49 diff_r_t = [diff(r_t_filtered), 0];

50

51 %Applying a low-pass filter after differentiation

52 B_m = 4000;

53 bpf_after_diff = firl(80, (B_m%2) / nyquist_freq); %Low-pass filter parameters
54 filtered_diff_r_t = filter(bpf_after_diff, 1, diff_r_t);

55

56 %Envelope detection to retrieve m_d(t)

57 md_t = abs(hilbert(filtered_diff_r_t));

58

59 %Scaling the envelope-detected signal to match the amplitude of the original message
50 scale_factor = max(mt) / max(md_t); %scaling factor

61 md_t_scaled = md_t * scale_factor;

62

63 %Calculating the Mean Squared Error for optimization

64 mse_values(i) = immse(mt(l:end-1), md_t_scaled(1l:end-1));

65

66 %Checking if this kf is better

67 if mse_values(i) < optimal_mse

68 optimal_mse = mse_values(i);

69 optimal_kf = kf;

70 end

71

72 %Plotting the recovered message signal for current value of kf

73 figure;

74 plot(t, mt, 'b', t(l:end-1), md_t_scaled(1l:end-1), 'r—-');

75 legend('Original m(t)', 'Recovered m_d(t) with kf = ' + string(kf));
76 title(['Comparison with kf = ' + string(kf)]);

77 xlabel('Time (s)');

78 ylabel('Amplitude');

79 end

80

g1 %Displaying the best kf value calculated in the above loop:
g2 disp(['The best value of kf for FM demodulation is ' + string(optimal_kf)]);

Note: I provided examples of many different Kf values used, which helped to visualize the effect
of under and over modulating the signal.

Further discussion of Kf:

The value of Kf'in an FM system controls the modulation index, and how much the signal's
frequency changes. If Kf'is too low, the signal can be easily messed up by the noise, but if it's too
high, it will use too much bandwidth and cause overmodulation, picking up high frequency
disturbances. Finding the right Kf is about making the signal strong against noise without taking

up unnecessary bandwidth. The best Kf gives you a clearer retrieved signal that has an ideal
SNR.

Amplitude

Amplitude

Original m(t)
— — Recovered m d(t) with kf = 9000
.l T , T L
o |'l I
I
I‘]\ ’l il ,l [l
(T
I
N
| TR
N\
RN
| N N
oot N T
| [|
[L
) [lpl\ l’\J\
\ P |]
\ R A N
\ [\ N
| S 1 / 1 v
0 0.005 0.01 0.015 0.02
Time (s)
Comparison with kf = 200
7 \A/I Original m(t)
— — Recovered m d(t) with kf = 200
N i
\
N i
N
\
\ -
R
VY
f\{_l
i L L | L I
-0.005 0 0.005 0.01 0.015 0.02

Time (s)

Amplitude

c?mpuisonwi'lhkhjo r@u ‘%E@'@\Qﬁ

Amplitude
»

w
T

T
I,

lijpy ~ ~ -

H]

Original m(t)
— — Recovered md(l) with kf =10

¥

I
|
1
I
1
I
I

-0.01 -0.005 0
Time (s)

Comparison with kf = 250

0.005 0.01 0.015 0.02

Time (s)

T T T T
BN | Original m(t)
— — Recovered m d(t) with kf = 250
7 4
N
N\
6 AN B
AN
N\
5 N 4
N
\
.
4 A
3 _\
2 4
1 -
AT / I | | L L L L
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Comparison with kf = 300
8 T T T 2 S

T

\ { Original m(t)
| N — Recovered md(t) with kf = 300

Amplitude
»

0 v 1 1 Il 1 1 1
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
Time (s)

From the graphs above, we can once again see that a Kf of approximately 250-300 seems to be
the best fit for our case.

